
DP SPATIAL PERCEPTION

LOCALIZATION & RECONSTRUCTION

Wrien by

Sergio Izquierdo
Supervised by

Javier Civera

★



A doctoral thesis on Computer Science and Systems

Deep Spatial Perception:
Localization & Reconstruction

Author:

Sergio Izquierdo

Supervised by:

Javier Civera

January 20, 2026



No por mucho madrugar amanece más temprano.

No matter how early you get up, sunrise won’t be any sooner.

– Spanish proverb



Abstract

Determining the location of an agent and representing its surroundings are two essential capabilities for the

successful deployment of intelligent systems with spatial awareness. Commonly referred to as localization

and reconstruction or mapping, these tasks have been studied for decades in the computer vision community,

as many applications—such as augmented reality and robotics—rely heavily on them to operate coherently

within the physical world.

One of the first steps in localizing an agent is retrieving its coarse location, for which Visual Place Recognition

(VPR) provides an effective solution when a database of georeferenced images is available. A key challenge in

VPR lies in designing compact, informative, and discriminative descriptors that remain robust under strong

viewpoint changes, structural variations, and lighting conditions. In this context, the first part of this thesis

proposes two complementary directions to advance VPR. First, we introduce a novel feature aggregation

method based on optimal transport, paired with a powerful vision transformer backbone, to produce more

robust image descriptors. Second, we propose a new training strategy that enhances the geographic sensitivity

of these descriptors by selecting hard training samples based on both visual similarity and spatial distance.

Together, these contributions advance towards effective, large-scale, and general VPR pipelines, significantly

improving metrics at popular benchmarks, like MSLS Challenge, where we improved recall@1 from 67.4% to

82.7% and Nordland, from 58.4% to 90.7%.

Within the broader task of scene reconstruction or mapping, monocular depth estimation is one of the

core pieces. While it is well understood how multiple views naturally provide geometric cues to resolve

ambiguities and improve accuracy, the enduring question is how to design methods that can robustly

exploit this information across diverse scenarios in a general-purpose manner. The second part of this

thesis proposes two novel methods for leveraging multi-view constraints for depth estimation. First, we

introduce a test-time refinement method that uses sparse 3D points from Structure-from-Motion to guide

single-view depth networks during inference. This preserves the learned priors of single-view depth networks

while injecting additional multi-view constraints. Second, we propose a general-purpose multi-view stereo

architecture designed to operate robustly across diverse environments and depth scales. Our contributions

focus on versatility, training on multiple datasets, addressing low overlap and dynamic objects, and removing

restrictions like a priori depth range knowledge. Together, these contributions demonstrate the potential

of combining learned priors with geometric constraints, showing promising steps towards a seamless

integration of multi-view information in depth estimation. More precisely, our proposed refinement improved

all considered single-view depth models, and our general-purpose multi-view stereo system obtained

state-of-the-art results on the Robust Multi-View Depth Benchmark.



Resumen

Determinar la ubicación de un agente y saber representar su entorno son dos capacidades esenciales para

el correcto funcionamiento de sistemas inteligentes con conocimiento espacial. Estas tareas, conocidas

comúnmente como localización y reconstrucción o mapeado, han sido estudiadas durante décadas en la

comunidad de visión por computador, ya que muchas aplicaciones, como la realidad aumentada o la robótica,

dependen en gran medida de ellas para interactuar de forma coherente en el mundo físico.

Uno de los primeros pasos en la localización de un agente es obtener una estimación aproximada de su

ubicación, para lo cual el Reconocimiento Visual de Lugares, conocido como VPR por sus siglas en inglés,

ofrece una solución eficaz cuando se dispone de una base de datos de imágenes georreferenciadas. Uno

de los principales desafíos en VPR consiste en diseñar descriptores que sean compactos, informativos

y discriminativos, pero que además se mantengan robustos ante fuertes cambios de punto de vista,

variaciones estructurales o de iluminación. En este contexto, la primera parte de esta tesis propone dos

direcciones complementarias para avanzar en VPR. En primer lugar, presentamos un método de agregación

de características basado en la teoría de transporte óptimo. Además proponemos utilizar una potente

arquitectura como red neuronal para obtener descriptores de imagen más robustos. En segundo lugar,

proponemos una nueva estrategia de entrenamiento que mejora la sensibilidad geográfica de los descriptores

seleccionando ejemplos difíciles basándonos tanto en similitud visual como en distancia espacial. Estas

contribuciones suponen un avance hacia sistemas de VPR efectivos, escalables y versátiles, mejorando

significativamente los resultados en benchmarks populares como MSLS Challenge o Nordland.

Dentro del campo de la reconstrucción o mapeado de escenas, la estimación de profundidad a partir de una

sola imagen se suele considerar una de las tareas clave. Si bien es conocido que el uso de múltiples vistas

aporta información geométrica que permite resolver ambigüedades y mejorar la precisión, el problema a

resolver es cómo diseñar métodos capaces de aprovechar esta información de forma robusta en escenarios

diversos y de propósito general. La segunda parte de esta tesis propone dos métodos para aprovechar las

información multivista en la estimación de profundidad. Primero, presentamos un método de refinamiento

en tiempo de inferencia que utiliza nubes de puntos 3D no densas obtenidas mediante Structure-from-Motion

para guiar a las redes de profundidad monocular durante su ejecución, preservando así los conocimientos

de la red mientras se incorporan restricciones geométricas adicionales. En segundo lugar, proponemos una

arquitectura multivista de propósito general diseñada para operar de forma robusta en entornos variados y

con rangos de profundidad diversos. Nuestras contribuciones se centran en la versatilidad: entrenando con

múltiples conjuntos de datos, afrontando escenas con poco solapamiento y objetos dinámicos, y eliminando

restricciones como el conocimiento previo del rango de profundidades. Conjuntamente, estas contribuciones

muestran el potencial de combinar lo aprendido por las redes con restricciones geométricas, dando pasos

hacia una integración fluida de la información multivista en la estimación de profundidad. Concretamente,

el refinamiento que hemos propuesto ha mejorado todos los métodos de profundidad que probamos y el

sistema de profundidad multivista que hemos desarrollado obtiene los mejores resultados actuales en el

Robust Multi-View Depth Benchmark.
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Outline of the Thesis 1
1.1 List of Contributions 2
1.2 Funding . . . . . . . . 3

Lo bueno, si breve, dos veces bueno.

Brevity is the soul of wit.

-Spanish proverb

Intelligent behavior in the physical world requires, in general, an understanding

of tridimensional space and motion. Whether it is a robot navigating an unfa-

miliar building, a drone mapping terrain, or a smartphone overlaying digital

content in Augmented Reality (AR), all these systems must have the ability to

localize themselves, estimate a consistent representation of their surroundings,

and interpret and interact with their environment in a spatially coherent manner.

The field that aims to endow machines with these abilities is known as Spatial

Artificial Intelligence (Spatial AI)—the study and development of systems that

can perceive, model, and operate effectively within physical environments [1].

At the core of Spatial AI lies spatial perception—the process by which an agent

interprets raw sensory data (images in this thesis) to infer spatial structure

and egomotion. This includes a wide range of individual tasks, from low-level

operations like image or feature matching [2–4] to mid-level tasks such as visual

localization [5, 6], camera pose estimation [7–9] and depth prediction [10–12],

and up to high-level processing pipelines like Simultaneous Localization And

Mapping (SLAM) [13, 14].

Broadly speaking, these tasks aim to answer two central questions: Where am
I? and What surrounds me? This thesis investigates key research challenges

associated with both, and it is structured into two parts aligned with these two

questions.

Part I of this thesis is focused on the where, and more precisely on Visual Place

Recognition (VPR)—the task of retrieving a coarse location by matching a query

image against a set of references. The usual approach to this task is to use

a backbone model that extracts visual features, followed by an aggregation

module that generates compact descriptors from these features. These models

are typically trained end-to-end using metric learning losses.

Most of the research in VPR has focused on designing deep architectures or

training pipelines to improve their accuracy and robustness. In Chapter 4, we

introduce architectural contributions that leverage a large pre-trained vision

model as the feature extractor, combined with a novel aggregation module to

create highly discriminative global descriptors. This results in a powerful and

easy-to-train model that achieves state-of-the-art results in common benchmarks.

In Chapter 5, we shift focus to the training process, proposing a new hard-

negative mining strategy that curates batches by sampling cliques of very

similar-looking images. This significantly improves the recall in very aliased or

densely sampled datasets.

Part II of this thesis addresses the what, specifically exploring multi-view depth

estimation—the process of inferring the scene geometry leveraging information

from multiple views. While a significant portion of recent research has focused

on single-view depth, leading to large, powerful, and robust models, all of

these are fundamentally limited by the ill-posed nature of the single-view
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setup. Incorporating additional views offers a principled way to overcome their

limitations and enhance robustness.

In this thesis, we propose two different manners of leveraging multi-view

cues for monocular depth. First, in Chapter 8, we enhance single-view depth

models with a Test-Time Refinement (TTR) strategy that uses sparse depth from

a Structure-from-Motion (SfM) reconstruction as supervision. This improves

the reconstruction’s accuracy, especially at large depths, where our method

leverages potentially large baselines from SfM. Then, in Chapter 9, we present a

large general-purpose multi-view depth network trained on diverse datasets.

Our model overcomes the limitations of previous multi-view stereo approaches

regarding varying scales, unknown depth ranges, dynamic environments, and

generalization to unseen environments.

1.1 List of Contributions

The contributions to this thesis, listed in what follows, stem from research pub-

lications, industry collaboration, open source development and peer reviewing

of academic manuscripts.

Publications
▶ Sergio Izquierdo and Javier Civera

‘SFM-TTR: Using Structure from Motion for Test-Time Refinement of

Single-View Depth Networks’

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2023

▶ Sergio Izquierdo and Javier Civera

‘Optimal Transport Aggregation for Visual Place Recognition’

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2024

▶ Sergio Izquierdo and Javier Civera

‘Close, But Not There: Boosting Geographic Distance Sensitivity in Visual

Place Recognition’

Proceedings of the European Conference on Computer Vision (ECCV), 2024

▶ Sergio Izquierdo et al.

‘MVSAnywhere: Zero Shot Multi-View Stereo’

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2025

▶ Blanca Lasheras-Hernandez et al.

‘Single-Shot Metric Depth from Focused Plenoptic Cameras’

Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2025

Industry Collaboration
▶ June 2023 - September 2023: Autonomy Intern at Skydio, San Mateo (US).

Supervised by Kalpana Seshadrinathan.

▶ July 2024 - December 2024: Research Intern at Niantic Labs, London (UK).

Supervised by Gabriel Brostow.



1 Outline of the Thesis 3

Open Source Development
▶ SfM-TTR.

Code for [15] is available at:

https://github.com/serizba/SfM-TTR.

Licensed under the GNU General Public License v3.0.

▶ DINOv2 SALAD.

Code and models for [16] are available at:

https://github.com/serizba/salad.

Licensed under the GNU General Public License v3.0.

▶ CliqueMining.

Code and models for [17] are available at:

https://github.com/serizba/cliquemining.

Licensed under the GNU General Public License v3.0.

▶ MVSAnywhere.

Code and models for [18] are available at:

https://github.com/nianticlabs/mvsanywhere.

Licensed allowing for non-commercial use only.

Peer Reviewing
▶ IROS (2022, 2024)

▶ ICCV (2023)

▶ RA-L (2024, 2025, 2025)

▶ TPAMI (2024, 2025)

▶ ECCV (2024)

▶ CVPR (2025) (Outstanding reviewer)

▶ NeurIPS (2025)

1.2 Funding

This thesis has been funded by the Spanish Government with the pre-doctoral

grant FPU20/02342. It has also been supported with projects from the Spanish

Government (PID2021-127685NB-I00 and TED2021-131150B-I00) and the Aragón

Government (DGA T45 23R, DGA FSE-T45 20R).

https://github.com/serizba/SfM-TTR
https://github.com/serizba/salad
https://github.com/serizba/cliquemining
https://github.com/nianticlabs/mvsanywhere
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De noche todos los gatos son pardos.

All cats are dark at night.

-Spanish proverb

The ability to identify a place based on visual information is a fundamental

human skill and a crucial component of our spatial awareness. This capability

allows us to revisit familiar places, identify landmarks, and navigate through

known environments effortlessly.

The fascination with this cognitive function expanded beyond its biological

roots, inspiring popular games like GeoGuessr [20] and WhereTaken [21]. In

these games, players are challenged to determine locations based on visual

cues, showcasing the remarkable aptitude of humans to match patterns and

recognize places
1
. 1: Popular youtuber from

the GeoGuessr community

recognises places within

0.1 seconds on Geoguessr

https://www.youtube.com/

watch?v=ff6E4mrUkBY

Unsurprisingly, beyond humans requiring these skills for perception and

engaging in them for fun, these abilities are also a fundamental building block

for Spatial AI. They are crucial for SLAM [13, 14], AR [22], and absolute visual

localization [23]. In SLAM, they enable loop closing so agents can identify

previously visited locations and correct accumulated errors [24, 25]. In AR, they

help recognize landmarks that applications may use to enhance the experience.

They are also the first step in absolute visual localization, obtaining a first coarse

location that is then refined with precise feature matching.

This part of the thesis focuses on the task of Visual Place Recognition, a subfield

of visual perception concerned with determining the location of a query image

by matching it to a database of geo-tagged reference images [26]. The term VPR

is widely used in the research community to refer to this specific problem.

VPR is typically formulated as an image retrieval problem, where visual

features of the images are extracted and aggregated to generate compact

but descriptive representations. These representations are then compared to

identify the most visually similar matches. For the retrieval to be effective, the

representations must be both robust and discriminative, effectively handling

challenges such as illumination changes, varying weather conditions, and

structural transformations.

Recent advancements in VPR have primarily focused on two broad areas: namely

the neural architectures and training process. Architectural improvements

involve designing or adopting novel backbone models [27, 28], which are

responsible for extracting meaningful and dense visual features from the input

images. The aggregation module, which combines deep features into a compact

and descriptive representation, has also been the subject of significant research [5,

29, 30]. Regarding the training pipeline, recent research encompasses strategies

and techniques to optimize the model’s performance, such as the losses [31–33],

mining procedures [34], or datasets [6, 33] used during training.

In this thesis, we present architectural contributions, including using a pre-

trained large vision model as the backbone model and a novel aggregation

module, which are detailed in Chapter 4. Additionally, a novel mining strategy

for the training pipeline is presented in Chapter 5. These contributions effectively

https://www.youtube.com/watch?v=ff6E4mrUkBY
https://www.youtube.com/watch?v=ff6E4mrUkBY
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advance the robustness and generality of VPR methods, obtaining unprece-

dented results in well-established and challenging benchmarks. Specifically, we

improve Recall@1 in the MSLS Challenge from 67.4% to 82.7% and in Nordland

from 58.4% to 90.7%.



Related Work 3
The significant research efforts on VPR have been exhaustively compiled in a

number of surveys and tutorials over the years [26, 35–38]. Current research

addresses a wide variety of topics, such as novel loss functions [6, 32], image

sequences [39–41], extreme viewpoint changes [42] or text features [43]. In this

section, we focus on work related to the architecture, i.e. feature extraction and

aggregation, as well as to the training pipeline, as there lie our contributions

presented in Chapters 4 and 5.

3.1 Architectures

Early approaches to VPR used either aggregations of handcrafted local fea-

tures [44–46] or global descriptors [47, 48]. In both cases, geometric [49] and

temporal [49, 50] consistency was sometimes enforced for enhanced perfor-

mance. With the emergence of deep neural networks, features pre-trained for

recognition tasks, without fine-tuning, showed a significant performance boost

over handcrafted ones [27]. However, training or fine-tuning specifically for VPR

tasks using contrastive or triplet losses [31] offers an additional improvement

and is standard nowadays.

Most of the backbones to extract image features used to be based on the ResNet

architecture [5, 30, 51]. More recent works in VPR have shifted towards Vision

Transformer (ViT) backbones [52, 53], obtaining significant improvements over

previous models. This shift opened the door to use large pretrained foundation

models like DINOv2 [54]. Although AnyLoc [28] first proposed to use DINOv2

in VPR, they use the model frozen, while in our research we show how finetuning

this model can further improve performance.

NetVLAD [5] is one of the most popular architecture explicitly designed for

VPR, mimicking the classical Vector of Locally Aggregated Descriptors (VLAD)

aggregation [45] but jointly learning from data both convolutional features and

cluster centroids. Later, Radenović et al. [30] proposed the Generalized Mean

Pooling (GeM) to aggregate feature activations, also a popular baseline due to

its simplicity and competitive performance. In addition to these, several other

alternatives have been proposed in the literature. For example, Teichmann et al.

[55] aggregates regions instead of local features. Recently, MixVPR [29] has

presented the best results in the literature by aggregating deep features with a

Multi-Layer Perceptron (MLP) layer.

A notable trend in VPR has been the adoption of a two-stage approach to

enhance retrieval accuracy [51, 53, 56–59]. After a first stage with any of the

methods presented in the previous paragraph, the top retrieved candidates are

re-ranked attending to the un-aggregated local features, either assessing the

geometric consistency to the query image or predicting their similarity. This

re-ranking stage adds a considerable overhead, which is why it is only applied

to a few candidates, but generally improves the performance. Re-ranking is

out of the scope of our research but, notably, we outperform all baselines that

employ re-ranking even if our model does not include such stage (and hence it

is substantially faster).
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In Chapter 4, we propose a novel aggregation module that uses optimal transport

to assign features to clusters. Optimal transport has found a significant number

of applications in graphics and computer vision [60]. Specifically, related to

our research, it has been used for image retrieval [61], image matching [62] and

feature matching [3, 4]. Recently, Zhang et al. [63] used optimal transport at

the re-ranking stage in a retrieval pipeline. However, ours is the first work that

proposes the formulation of local feature aggregation from an optimal transport

perspective.

3.2 Training Pipelines

Overall, training details matter in image retrieval and are task-specific. Typically,

contrastive [64] and triplet [65] losses are used to train a deep model that

maps images into an embedding space, in which similar samples are close

together and dissimilar ones are far apart. Although other losses have been

proposed in the literature, e.g. [34, 66–72], Musgrave et al. [31] and Roth et al. [73]

showed a higher saturation than the one reported in the previous literature.

The particularities of VPR, however, can be leveraged in task-specific losses. For

example, Leyva-Vallina et al. [32] grade similarity based on spatial overlap to

make losses more informative. Ali-bey et al. [33] showed that the multi-similarity

loss [74] can be effectively used for VPR tasks. They curated a dataset, GSV-

Cities, and organized it on sparse places that, combined with the multi-similarity

loss led to significant performance gains. As other recent works [29, 75], our

contributions builds on top of the multi-similarity loss on GSV-Cities. However,

the sparse nature of the GSV-Cities dataset [33] limits the effectiveness of the

models in densely sampled data, present in many benchmarks [39, 76]. We

argue that densely sampled data is relevant in VPR as it is a prevalent condition

in numerous applications, owing to the proliferation of mobile computational

platforms capturing video (such as cars, drones, glasses and phones) and the

availability of tools to crowdsource and store big data.

Mining informative batches matters as much or even more than the chosen

losses [34]. “Easy” samples contribute with small loss values, which may slow

down or plateau the training [31]. On the other hand, using only “hard” samples

produces noisy gradients and may overfit or converge to local minima [34, 77],

which suggests a sweet spot in mixed strategies [78]. As another taxonomy,

mining can be done offline after a certain number of iterations [79–81], with high

computational costs, or online within each batch [82, 83]. In practice, “hard”

negatives samples are typically used, as they are easy to mine and informative [5,

39, 84, 85]. “Hard” positive mining [86–89] is more challenging to implement, as

it is sometimes caused by occlusions, large scale changes or low overlap, which

may be misleading and harm generalization [30]. Wang et al. [74] generalizes

sampling schemes by weighting pairs in the multi-similarity loss according to

their embedding distance.
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Sergio Izquierdo and Javier

Civera

‘Optimal Transport Aggregation

for Visual Place Recognition’

Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition (CVPR), 2024

The code and models are avail-

able at https://github.com/

serizba/salad

The task of Visual Place Recognition aims to match a query image against
references from an extensive database of images from different places, relying
solely on visual cues. State-of-the-art pipelines focus on the aggregation of
features extracted from a deep backbone, in order to form a global descriptor
for each image. In this context, we introduce SALAD (Sinkhorn Algorithm
for Locally Aggregated Descriptors), which reformulates NetVLAD’s soft-
assignment of local features to clusters as an optimal transport problem. In
SALAD, we consider both feature-to-cluster and cluster-to-feature relations
and we also introduce a ‘dustbin’ cluster, designed to selectively discard
features deemed non-informative, enhancing the overall descriptor quality.
Additionally, we leverage and fine-tune DINOv2 as a backbone, which
provides enhanced description power for the local features, and dramatically
reduces the required training time. As a result, our single-stage method
not only surpasses single-stage baselines in public VPR datasets, but
also surpasses two-stage methods that add a re-ranking strategy with
significantly higher cost.

Recognizing a place solely from images becomes a challenging task when scenes

undergo substantial changes in their structure or appearance. Such capability

is referred to in the scientific and technical literature as VPR, and is essential

for agents to navigate and understand their surroundings autonomously in a

wide array of applications, such as robotics [90–94] or AR [37]. Specifically, it is

present in SLAM [13, 95] and absolute pose estimation [96, 97] pipelines.

In practice, VPR is framed as an image retrieval problem, wherein typically

a query image serves as the input and the goal is to obtain an ordered list of

top-k matches against a pre-existing database of geo-localized reference images.

Images are represented as an aggregation of appearance pattern descriptors,

which are subsequently compared via nearest neighbour. The effectiveness of

this matching relies on generating discriminative per-image descriptors that

exhibit robust performance even for challenging variations such as fluctuating

illumination, structural transformations, temporal changes, weather and sea-

sonal shifts. Most recent research on VPR have thus focused on the two key

components of this general pipeline, namely the deep neural backbones for

feature extraction and methods for aggregating such features.

For years, ResNet-based neural networks have been the predominant backbones

for feature extraction [5, 30, 51]. Recently, given the success of ViT for different

computer vision tasks [98–101], some methods have introduced ViT in the field

of VPR [52, 53]. AnyLoc [28] proposed to leverage foundation models, using

DINOv2 [54] as a feature extractor for VPR. However, AnyLoc uses DINOv2 ‘as

is’, while we show in this chapter that fine-tuning the model for VPR brings a

significant increase in performance.

Regarding aggregation, NetVLAD [5], the learned counterpart to the traditional

handcrafted VLAD [45], is among the most popular choices. Alternative methods

include pooling layers like GeM [30] or learned global aggregation, like the

https://github.com/serizba/salad
https://github.com/serizba/salad
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recent MixVPR [29]. In this chapter, we propose optimal transport aggregation,

setting a new state of the art in VPR.

ResNet
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Figure 4.1: Illustration of a VPR
baseline (left) and our contri-
bution (right). The left column

outlines a typical VPR baseline,

a ResNet backbone followed by

NetVLAD aggregation [5]. On the

right column, we replace ResNet

with a partially fine-tuned DI-

NOv2 [54] backbone, and incor-

porate SALAD, our novel optimal

transport aggregation using the

Sinkhorn Algorithm. Our model

achieves unprecedented state-of-

the-art results on common VPR

benchmarks.

As a summary, in this work, we present a single-stage approach to VPR that

obtains state-of-the-art results in the most common benchmarks. To achieve

this, we present two key contributions:

▶ First, we propose SALAD (Sinkhorn Algorithm for Locally Aggregated

Descriptors), a reformulation of the feature-to-cluster assignment problem

through the lens of optimal transport, allowing more effective distribution

of local features into the global descriptor bins. To further improve the

discriminative power of the aggregated descriptor, we let the network

discard uninformative features by introducing a ‘dustbin’ mechanism.

▶ Secondly, we integrate the representational power of foundation models

into VPR, using DINOv2 as the backbone for feature extraction. Unlike

previous approaches that utilized DINOv2 in its pre-trained form, our

method involves fine-tuning the model specifically for the task. This

fine-tuning process converges extremely fast, in just four epochs, and

allows DINOv2 to capture more relevant and distinctive features pertinent

to place recognition tasks.

The fusion of these two novel components results in DINOv2 SALAD, which

can be efficiently trained in less than one hour and sets unprecedented recall

in VPR benchmarks, with 75.0% Recall@1 in MSLS Challenge and 76.0% in

Nordland. All of this with a single-stage pipeline, without requiring expensive

post-processing steps and with an inference speed of less than 3 ms per image.

4.1 Method: SALAD

DINOv2 SALAD is based on NetVLAD, but we propose to use and fine-tune

the DINOv2 backbone (Subsection 4.1.1) and propose a novel module (SALAD)

for the assignment (Subsection 4.1.2) and aggregation (Subsection 4.1.3) of

features.

4.1.1 Local Feature Extraction

Effective local feature extraction lies in striking a balance: features must be robust

enough to withstand substantial changes in appearance, such as those between

seasons or from day to night, yet they should retain sufficient information on

local structure to enable accurate matching.

Inspired by the success of ViT architectures in many computer vision tasks and

by AnyLoc [28], that leverages the exceptional representational capabilities of

foundation models [102], we adopt DINOv2 [54] as our backbone. However,

differently from AnyLoc, we use a supervised pipeline and include the backbone

in the end-to-end training for the specific task, yielding improved performance.

DINOv2 adopts a ViT architecture that initially divides an input image I ∈
ℝℎ×𝑤×𝑐

into 𝑝 × 𝑝 × 𝑐 patches, with 𝑝 = 14. These patches are sequentially pro-

jected with transformer blocks, resulting in the output tokens {t1 , . . . , t𝑛 , t𝑛+1}, t𝑖 ∈
ℝ𝑑

, where 𝑛 = ℎ𝑤/𝑝2
is the number of input patches and there is an additional

global token t𝑛+1 that aggregates class information. Although the DINOv2’s

authors reported that fine-tuning the model only brings dim improvements, we
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Figure 4.2: Overview of our
method. First, the DINOv2 back-

bone extracts local features and

a global token from an input im-

age. Then, a small MLP, score pro-

jection, computes a score matrix

for feature-to-cluster and dustbin

relationships. The optimal trans-

port module uses the Sinkhorn al-

gorithm to transform this matrix

into an assignment, and subse-

quently, dimensionality-reduced

features are aggregated into the

final descriptor based on this as-

signment and concatenated with

the global token.

found that at least for VPR there are substantial gains in selectively unfreezing

and training the last blocks of the encoder.

4.1.2 Assignment

In NetVLAD, a global descriptor is formed by assigning a set of features to

a set of clusters, {𝐶1 , . . . , 𝐶 𝑗 , . . . , 𝐶𝑚}, and then aggregating all features that

belong to each cluster. For the assignment, NetVLAD computes a score matrix

S ∈ ℝ𝑛×𝑚
>0

, where the element in its 𝑖th row and 𝑗th column, 𝑠𝑖 , 𝑗 ∈ ℝ>0, represents

the cost of assigning a feature to a cluster 𝐶 𝑗 . In other words, S quantifies the

affinity of each feature to each cluster. While SALAD draws inspiration from

NetVLAD, we identify several crucial aspects in their assignment and propose

alternatives to address these.

Reduce assignment priors. When building the score matrix S, NetVLAD

introduces certain priors. Specifically, it initializes the linear layer that computes

S with centroids derived from k-means. While this may accelerate the training,

it introduces inductive bias and potentially makes the model more susceptible

to local minima. In contrast, we propose to learn each row s𝑖 of the score matrix

from scratch with two fully connected layers initialized randomly:

s𝑖 = W𝑠2(𝜎(W𝑠1(t𝑖) + b𝑠1)) + b𝑠2 (4.1)

where W𝑠1 , W𝑠2 and b𝑠1 , b𝑠2 are the weights and biases of the layers, and 𝜎 is a

non-linear activation function.

Discard uninformative features. Some features, such as those representing the

sky, might contain negligible information for VPR. NetVLAD does not account

for this, and the contribution of all features is preserved in the final descriptor.

Contrary, we follow recent works on keypoint matching and introduce a ‘dustbin’

where non-informative features are assigned to. For that, we augment the score

matrix, from S to S̄ = [S, s̄𝑖 ,𝑚+1] ∈ ℝ𝑛×𝑚+1

>0
, by appending the column s̄𝑖 ,𝑚+1

representing the feature-to-dustbin relation. As in SuperGlue [4], this score is

modeled with a single learnable parameter 𝑧 ∈ ℝ:

s̄𝑖 ,𝑚+1 = 𝑧1𝑛 (4.2)

being 1𝑛 = [1, . . . , 1]⊤ ∈ ℝ𝑛
a 𝑛-dimensional vector of ones.

Optimal assignment. The original NetVLAD assignment computes a per-

row softmax over S to obtain the distribution of each feature’s mass across
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the clusters. However, this approach only considers the feature-to-cluster

relationship and overlooks the reverse –the cluster-to-feature relation. For this

reason, we reformulate the assignment as an optimal transport problem where

the features’ mass, 𝝁 = 1𝑛 , must be effectively distributed among the clusters or

the ‘dustbin’, 𝜿 = [1⊤𝑚 , 𝑛 − 𝑚]⊤. We follow SuperGlue [4] and use the Sinkhorn

Algorithm [103, 104] to obtain the assignment P̄ ∈ ℝ𝑛×(𝑚+1)
such that

P̄1𝑚+1 = 𝝁 and P̄⊤1𝑛 = 𝜿. (4.3)

This algorithm finds the optimal transport assignment between distributions 𝝁
and 𝜿 iteratively normalizing rows and columns from exp

(
S̄
)
. Finally, we drop

the dustbin column to obtain the assignment P =
[
p∗,1 , . . . , p∗,𝑚

]
, where p∗, 𝑗

stands for the 𝑗th column of P.

4.1.3 Aggregation

Once the feature assignment in our SALAD framework is computed as detailed

in Subsection 4.1.2, we focus on the aggregation of these assigned features to

form the final global descriptor. The aggregation process in NetVLAD involves

combining all features assigned to each cluster 𝐶 𝑗 . However, we introduce three

variations:

Dimensionality reduction. To efficiently manage the final descriptor size, we

first reduce the dimensionality of the tokens from ℝ𝑑
to ℝ𝑙

. This is achieved by

processing the features through two fully connected layers, precisely adjusting

the size of the feature vectors while retaining the essential information from the

task.

f𝑖 = W 𝑓2(𝜎(W 𝑓1(t𝑖) + b 𝑓1)) + b 𝑓1 (4.4)

Aggregation. Based on the assignment matrix derived using the Sinkhorn

Algorithm, each feature is aggregated into its assigned cluster. Differently from

NetVLAD, we do not subtract the centroids to get the residuals. We directly

aggregate these features with a summation, reducing the incorporated priors

about the aggregation. Viewing the resulting VLAD vector as a matrix V ∈ ℝ𝑚×𝑙
,

each element 𝑉𝑗 ,𝑘 ∈ ℝ is computed as follows:

𝑉𝑗 ,𝑘 =
𝑛∑
𝑖=1

𝑃𝑖 ,𝑘 · 𝑓𝑖 ,𝑘 (4.5)

where 𝑓𝑖 ,𝑘 corresponds to the 𝑘th
dimension of f𝑖 , with 𝑘 ∈ {1, . . . , 𝑙}.

Global token. To include global information about the scene not easily incor-

porated into local features, we also incorporate a scene descriptor 𝑔 computed

as:

g = W𝑔2
(𝜎(W𝑔1

(t𝑛+1) + b𝑔1
)) + b𝑔1

(4.6)

where t𝑛+1 is the global token from DINOv2. We then concatenate g with V
flattened. Following NetVLAD, we do an L2 intra-normalization and an entire

L2 normalization of this vector, which yields the final global descriptor.
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4.2 Experiments

To rigorously evaluate the effectiveness of our proposed contributions, we

conducted exhaustive experiments following standard evaluation protocols.

4.2.1 Implementation Details

We ground our training and evaluation setups on the publicly provided frame-

work by MixVPR
1
. 1: https://github.com/

amaralibey/MixVPR
For the architecture, we opt for a pretrained DINOv2-B backbone, targeting a

balance between computational efficiency and representational capacity. We

only fine-tune the final 4 layers of the encoder, which significantly enhances the

performance without markedly increasing training time. For the fully connected

layers, the weights of the hidden layers W𝑠1 , W 𝑓1 and W𝑔1
have 512 neurons and

use ReLU for the activation function 𝜎. To optimize feature handling, we employ

a dimensionality reduction, compressing feature token dimensions from 𝑑 = 768

to 𝑙 = 128, and the global to 256. We use 𝑚 = 64 clusters, resulting in a global

descriptor of size 128× 64+ 256. We also report results with smaller descriptors,

with size 512 + 32 (𝑚 = 15, 𝑙 = 32), and 2048 + 64 (𝑚 = 32, 𝑙 = 64).

We train on GSV-Cities [33], a large dataset of urban locations collected from

Google Street View. Given the impressive representation power of DINOv2,

our pipeline achieves training convergence within just 4 epochs. Using a batch

size of 60 places, each represented by 4 images, the training is completed in 30

minutes on a single NVIDIA RTX 3090. We use the multi-similarity loss [74]

and AdamW [105] for the optimization, with an initial learning rate set to 6e−5.

To ensure an effective learning rate, we linearly decay the initial rate at every

iteration so at the end of the training is 20% of the initial value. We use a dropout

rate of 0.3 on the score projection and dimensionality reduction neurons. As

our model is agnostic to the image input size (as long as it can be divided in

14 × 14 patches), we evaluate on images of size 322 × 322 but train on 224 × 224

to speedup training time.

To validate our experiments and select the hyperparameters, we monitored the

recall in the Pittsburg30k-test [106]. We observed that, in the long run, most

configurations perform similarly, but rapid convergence on a few epochs is more

sensitive to the hyperparameters.

4.2.2 Results

We benchmarked our model against several single-stage baselines, namely

NetVLAD [5] and GeM [30] as two representative tradicional baselines, and

Conv-AP [33], CosPlace [6], MixVPR [29] and EigenPlaces [107] as the four most

recent and best performing baselines in the literature. The evaluation spanned a

diverse array of well-established datasets: MSLS Validation and Challenge [39],

which are comprised of dashcam images; Pittsburgh250k-test [106], featuring

urban scenarios; SPED [92], a collection from surveillance cameras; NordLand,

notable for its seasonal variations from images captured from the front of a train

traversing Norway; and SF-XL [6], a large urban dataset to evaluate VPR at scale.

We use Recall@k (R@k) as the metric for all our experiments, as it is standard

in related work. We use evaluation data and code from MixVPR [29], which

considers retrieval as correct if an image at less than 25 meters (or two frames

for Nordland) from the query is among the top-k predicted candidates.

https://github.com/amaralibey/MixVPR
https://github.com/amaralibey/MixVPR
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Table 4.1: Comparison against single-stage baselines. We compare DINOv2 SALAD against two popular baselines [5, 30] and the four

baselines that show best results in recent literature [6, 29, 33, 107]. Our slim version already obtains state-of-the-art results in all metrics. Our

full model outperforms all previous results by a significant margin. Note, in particular, the large improvement in the most challenging

benchmarks, MSLS Challenge and NordLand. † We reproduced GeM results training during 80 epochs following MixVPR training pipeline.

Method

MSLS Challenge MSLS Val NordLand Pitts250k-test SPED

Desc. size Latency (ms) R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

NetVLAD [5] 32768 1.41 35.1 47.4 82.6 89.6 32.6 47.1 90.5 96.2 78.7 88.3

GeM [30]† 1024 1.14 49.7 64.2 78.2 86.6 21.6 37.3 87.0 94.4 66.7 83.4

Conv-AP [33] 8192 1.22 54.2 66.6 83.1 90.3 42.7 58.9 92.9 97.7 79.2 88.6

CosPlace [6] 2048 2.59 67.2 78.0 87.4 93.0 44.2 59.7 92.1 97.5 80.1 89.6

MixVPR [29] 4096 1.37 64.0 75.9 88.0 92.7 58.4 74.6 94.6 98.3 85.2 92.1

EigenPlaces [107] 2048 2.65 67.4 77.1 89.3 93.7 54.4 68.8 94.1 98.0 69.9 82.9

DINOv2 SALAD 512 + 32 2.33 70.8 83.6 89.3 94.9 61.2 78.9 93.0 97.4 88.5 94.7

DINOv2 SALAD 2048 + 64 2.35 73.7 85.9 90.5 95.4 70.4 85.7 94.8 98.3 89.5 94.9

DINOv2 SALAD 8192 + 256 2.41 75.0 88.8 92.2 96.4 76.0 89.2 95.1 98.5 92.1 96.2

Table 4.2: Comparison against baselines with re-ranking. We compare our single-stage DINOv2 SALAD with methods that perform a

re-ranking stage to improve performance. Without using re-ranking, our DINOv2 SALAD outperforms all other methods while being orders

of magnitude faster and more memory-efficient. Latency metrics obtained from [53] using a RTX A5000. Latency for DINOv2 SALAD was

computed using a RTX 3090. Memory footprint is calculated on the MSLS Val dataset, which includes around 18, 000 images.

Method

Desc. size

Memory (GB)

Latency (ms) MSLS Challenge MSLS Val

Global Local Retrieval Reranking R@1 R@5 R@10 R@1 R@5 R@10

Patch-NetVLAD [51] 4096 2826 × 4096 908.30 9.55 8377.17 48.1 57.6 60.5 79.5 86.2 87.7

TransVPR [52] 256 1200 × 256 22.72 6.27 1757.70 63.9 74.0 77.5 86.8 91.2 92.4

R2Former [53] 256 500 × 131 4.7 8.88 202.37 73.0 85.9 88.8 89.7 95.0 96.2

DINOv2 SALAD (ours) 8192 + 256 0.0 0.63 2.41 0.0 75.0 88.8 91.3 92.2 96.4 97.0

Table 4.3: Ablations. The first two rows correspond to two baselines in the literature [5, 28], the rest to different aggregations appended to

DINOv2 including our DINOv2 SALAD. Note that only DINO NetVLAD, with a significantly bigger descriptor size than ours, is able to

show competitive results. We outperform all the rest DINOv2 baselines of similar descriptor sizes by a large margin.

Method

MSLS Challenge MSLS Val NordLand Pitts250k-test SPED

Desc. size R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ResNet NetVLAD [5] 32768 35.1 47.4 51.7 82.6 89.6 92.0 32.6 47.1 53.3 90.5 96.2 97.4 78.7 88.3 91.4

DINOv2 AnyLoc [28] 49152 42.2 53.5 58.1 68.7 78.2 81.8 16.1 25.4 30.4 87.2 94.4 96.5 85.3 94.4 95.4

ResNet SALAD 8192 57.4 70.8 74.9 83.2 89.5 91.8 33.3 49.6 55.8 91.4 96.9 97.9 75.0 86.7 89.8

ConvNext [108] SALAD 8192 63.9 75.2 80.1 85.5 92.4 94.5 47.8 64.3 70.3 93.9 97.9 98.8 83.5 90.9 92.9

DINOv2 GeM 4096 62.6 78.3 83.0 85.4 93.9 95.0 35.4 52.5 59.6 89.5 96.5 98.0 83.0 92.1 93.9

DINOv2 MixVPR 4096 72.1 85.0 88.3 90.0 95.1 96.0 63.6 80.1 84.6 94.6 98.3 99.3 89.8 94.9 96.1

DINOv2 NetVLAD 24576 75.8 86.5 89.8 92.4 95.9 96.9 71.8 86.5 90.1 95.6 98.7 99.3 90.8 95.7 96.7
DINOv2 NetVLAD (dim. red.) 8192 73.3 85.6 88.3 90.1 95.4 96.8 70.1 86.5 90.2 95.4 98.4 99.1 90.6 95.4 96.7
DINOv2 SALAD (ours) 8192 + 256 75.0 88.8 91.3 92.2 96.4 97.0 76.0 89.2 92.0 95.1 98.5 99.1 92.1 96.2 96.5
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As shown in Table 4.1, our model outperforms all previous methods on all

datasets and all metrics. Even the smaller 512 + 32 version already surpasses

previous models with bigger descriptors on most datasets. It is worth highlight-

ing the metrics saturation observed in MSLS Val, Pitts250k-test and SPED, and

on the other hand the challenging nature of MSLS Challenge and NordLand.

The MSLS Challenge dataset, with its diversity, extensive size and closed labels,

and NordLand, with its extreme sample similarity and seasonal shifts, emerge

then as key benchmarks for assessing VPR performance. Although our DINOv2

SALAD shows a significant improvement on all benchmarks, it is precisely in

MSLS Challenge and NordLand where we obtain the most substantial recall

increases, with +7.6%,+11.7% and +17.6%,+14.6% for R@1, R@5 respectively

over the second best.

For SF-XL, as shown in Table 4.4, our method also achieves the best results

to date. This is remarkable, considering that the previous state of the art was

trained on this dataset, whereas our method never used any image of San

Francisco when it was fine-tuned.

In Table 4.2, we compare our DINOv2 SALAD method, which solely operates

on a single retrieval stage, against the leading two-stage VPR techniques. In this

comparison, we include the best performing models in the literature, namely

R2Former [53], TransVPR [52], and Patch-NetVLAD [51], which incorporate a

re-ranking refinement. Note how our DINOv2 SALAD, despite being orders of

magnitude faster and smaller in memory, significantly outperforms all these

two-stage methods on all benchmarks. This finding not only highlights the

efficiency of our model but also demonstrates the effectiveness of global retrieval

using our novel SALAD aggregation. Additionally, considering our method’s

reliance on local features, we believe that a re-ranking stage could also be

applied, potentially increasing our recall metrics but at the price of a higher

computational footprint.

4.2.3 Ablation Studies

Effect of DINOv2. We assess the impact of the DINOv2 backbone and our

optimal transport aggregation SALAD separately. For this, we compare with

the existing baselines of ResNet NetVLAD or AnyLoc, this last one applying

a VLAD on top of a pretrained DINOv2 encoder. We integrate the DINOv2

backbone with various aggregation modules, obtaining a handful of performant

techniques that improve their respective previous results. As shown in Table 4.3,

all of these outperform the baselines, even though AnyLoc already uses DINOv2.

This validates the DINOv2’s integration in end-to-end fine-tuning to refine its

capabilities.

Effect of SALAD. Our experiments in Table 4.3 show that aggregation also

matters. Even the recent MixVPR aggregation coupled with DINOv2 does not

match the performance of DINOv2 NetVLAD and DINOv2 SALAD. We believe

that the DINOv2 backbone is especially suitable for local feature aggregation, as

its features work remarkably well in dense visual perception tasks [54, 109, 110].

Method Desc. size SF-XL Test v1 SF-XL Test v2

CosPlace [6] 2048 76.4 88.8

EigenPlaces [107] 2048 84.1 90.8

DINOv2 SALAD 8192 + 256 88.6 94.8

Table 4.4: Results on SF-XL.
(R@1) Our DINOv2 SALAD

achieves unprecedented results

on SF-XL despite never seeing any

single image of San Francisco dur-

ing VPR finetuning.
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Model Dim. size # Params. Latency (ms) MSLS Val R@1

S 384 21M 1.30 90.5

B 768 86M 2.41 92.2

L 1024 300M 7.82 92.6

G 1536 1100M 24.93 91.7

Table 4.5: DINOv2 configura-
tions and performances.

Figure 4.3: Heatmap of local fea-
tures importance. Left images

show the original pictures, their

right counterparts represent the

weights not assigned to the ‘dust-

bin’. Note how the network learns

to discard uninformative regions

like skies, roads or dynamic ob-

jects, and instead focus on dis-

tinctive patterns in buildings and

vegetation. We attribute its focus

on distant buildings to their in-

variance to viewpoint change.

Although DINOv2 NetVLAD achieves comparable performance to SALAD,

it employs a descriptor almost three times as big. Besides, the generalization

performance of DINOv2 NetVLAD is limited, as observed in NordLand results.

We attribute this to NetVLAD’s priors initialization with urban scenarios, which

constrain the convergence of the system. In our experiments we also trained a

slimmer DINOv2 NetVLAD version, whose features are dimensionally reduced

as described in Subsection 4.1.3, targetting a final descriptor of roughly the

same size as SALAD. In this fairer setup, DINOv2 SALAD clearly outperforms

DINOv2 NetVLAD. We also evaluate SALAD on top of ResNet and ConvNext

backbones, which improves over baseline ResNet NetVLAD but is significantly

worse than using DINOv2. This indicates that SALAD is specially suited for

high spatial resolution features, like the ones from DINOv2.

Effect of hyperparameters. DINOv2 comes in different sizes that affect the

number of parameters, inference speed, and representation capabilities. As

shown in Table 4.5, more parameters do not always result in better performance.

Excessively big models might be harder to train or prone to overfitting the

training set. From these results, we chose the DINOv2-B backbone, which

exhibits a great balance between performance and size and speed. Regarding

descriptor size, we observed (Table 4.1) that changing 𝑚 and 𝑙 allows to get

slimmer versions with competitive performance. For the number of blocks to

train, as shown in Table 4.6, fine-tuning two or four block report the best results

without significant computation overhead.

Effect of SALAD components. In Table 4.6, we show how different components

of our SALAD pipeline affect the final performance. Both the global token, which

Method

MSLS Val

R@1 R@5 R@10

DINOv2 SALAD (frozen) 88.5 95.0 96.2

DINOv2 SALAD (train 2 last blocks) 92.0 96.5 97.0
DINOv2 SALAD (train 4 last blocks) 92.2 96.4 97.0
DINOv2 SALAD (train 6 last blocks) 91.6 96.2 97.0
DINOv2 SALAD (train all blocks) 89.2 95.1 96.1

DINOv2 SALAD w/o dustbin 91.4 95.8 96.2

DINOv2 SALAD w/o global token 91.8 96.0 96.2

DINOv2 SALAD (Dual Softmax) 91.9 95.7 96.5

DINOv2 SALAD 92.2 96.4 97.0

Table 4.6: Ablation study of the
SALAD components.



4 Optimal Transport Aggregation 17

Cl
us

te
rs

Cl
us

te
rs

Image 1 Image 2Cluster assignment

Figure 4.4: Illustration of feature-
to-cluster assignments. See at the

leftmost and rightmost part of the

figure two different views of the

same place. Framed by red and

blue squares we highlight two cor-

responding patches in each of the

images. The central part of the fig-

ure shows the feature-to-cluster

assignments for these patches.

Note how DINOv2 SALAD cor-

rectly assigns the features to the

same bins for both views, even

with different local texture.

appends global information not captured in local features, and the dustbin,

which helps in distilling the aggregated features, contribute to the performance

of SALAD. We also trained a model using a dual-softmax [111] to solve the

optimal transport assignment, following LoFTR and Gluestick [3, 112]. Although

dual-softmax achieves only slightly worse performance, the Sinkhorn Algorithm

is theoretically sound and provides a better acronym to our method.

4.2.4 Introspective Results

We provide an introspection of our model’s performance through a series of

illustrative figures. Figure 4.3 visualizes the weights that are not assigned to

the ‘dustbin’, offering insight into the parts of the input image that the network

considers informative. As the ‘dustbin’ assignment is completely learnt by the

network, some discarded features might be counter-intuitive. However, we

observe that it typically removes dynamic objects and focuses on the most

distinctive and invariant parts of the image. In Figure 4.4, we display the

assignment distribution of patches from two different images depicting the

same place. It demonstrates the model’s ability to consistently distribute most

of the weights into the same bins for patches representing similar regions. Such

repeatable and consistent assignment across different images of the same place

is crucial for the reliability and performance of the system. Finally, in Figure 4.5,

we showcase various query images alongside their respective top-3 retrievals

made by our system. DINOv2 SALAD is able to retrieve correct predictions

even under challenging conditions, such as severe changes in illumination or

viewpoint.
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Query Top-1 Top-2 Top-3

Figure 4.5: DINOv2 SALAD
qualitative results at MSLS. The

left column shows several queries

and the three other ones shows

the top-3 candidates retrieved by

our DINOv2 SALAD. Candidates

are framed in green if they cor-

respond to the same place as the

query, and in red if they do not.

Note the correct retrievals under

seasonal, weather, viewpoint and

day-night changes. Note also a

challenging failure case in the last

row, due to non-discriminative

image content.

4.3 Conclusions and Limitations

In this chapter, we have proposed DINOv2 SALAD, a novel model for VPR that

outperforms previous baselines by a substantial margin. This achievement is

the result of combining two key contributions: a fine-tuned DINOv2 backbone

for enhanced feature extraction and our novel SALAD (Sinkhorn Algorithm for

Locally Aggregated Descriptors) module for feature aggregation. Our extensive

experiments demonstrate the effectiveness of these modules, highlighting

the model’s single-stage nature and exceptionally fast training and inference

speed.

While our work brings significant improvements in performance, it is not

without limitations. Primarily, the adoption of DINOv2 as our backbone results

in slower processing speeds compared to ResNet-based methods. Besides,

although SALAD is a general aggregation module, its effectiveness is tied to the

choice of backbone. It excels with DINOv2, which offers high spatial resolution

features, but it is less suited for coarser features. Additionally, in SALAD we

use an optimal transport assignment in its simplest form. More sophisticated

constraints could improve the resulting assignment, a very relevant aspect for

our future work.
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Chapter based on [17]:

Sergio Izquierdo and Javier

Civera

‘Close, But Not There: Boosting

Geographic Distance Sensitivity

in Visual Place Recognition’

Proceedings of the European Confer-
ence on Computer Vision (ECCV),
2024

The code and models are avail-

able at https://github.com/

serizba/cliquemining

Visual Place Recognition plays a critical role in many localization and
mapping pipelines. It consists of retrieving the closest sample to a query
image, in a certain embedding space, from a database of geotagged references.
The image embedding is learned to effectively describe a place despite
variations in visual appearance, viewpoint, and geometric changes. In this
work, we formulate how limitations in the Geographic Distance Sensitivity
of current VPR embeddings result in a high probability of incorrectly
sorting the top-𝑘 retrievals, negatively impacting the recall. In order to
address this issue in single-stage VPR, we propose a novel mining strategy,
CliqueMining, that selects positive and negative examples by sampling
cliques from a graph of visually similar images. Our approach boosts the
sensitivity of VPR embeddings at small distance ranges, significantly
improving the state of the art on relevant benchmarks. In particular, we
raise recall@1 from 75% to 82% in MSLS Challenge, and from 76% to
90% in Nordland.

Visual Place Recognition refers to identifying a place from a query image

I𝑞 ∈ ℝℎ×𝑤×3
, which boils down to retrieving the 𝐾 closest images {I1 , . . . , I𝐾}

from a database where they are georeferenced. VPR is fundamental in several

computer vision applications. It constitutes the first stage of visual localization

pipelines by providing a coarse-grain pose that reduces the search space in large

image collections. This pose can be later refined by robust geometric fitting

from local feature matches [8, 113]. It is also essential in visual SLAM, in which

it is used to detect loop closures and remove geometric drift [13, 95], or as the

basis for topological SLAM [114, 115].

In VPR pipelines, every RGB image I𝑖 is typically mapped to a low-dimensional

embedding 𝑥𝑖 ∈ ℝ𝑑
by a deep neural network 𝑓𝜃 : I𝑖 → 𝑥𝑖 that extracts and

aggregates visual features that are relevant for the task. The closest samples

are retrieved by a nearest-neighbour search using distances in the embedding

space 𝑑𝑒
𝑖
= ||𝑥𝑞 − 𝑥𝑖||2, which hopefully correspond to the views with smallest

geographic distance 𝑑
𝑔

𝑖
= ||𝑝𝑞 − 𝑝𝑖||2 between them, with 𝑝𝑖 ∈ ℝ3

standing for

the camera position for I𝑖 . The challenge lies on learning the wide variability

in the visual appearance of places, caused among others by environmental,

weather, seasonal, illumination and viewpoint variability, or dynamic content.

Recent years have witnessed significant advances in VPR, driven among others

by enhanced network architectures [16, 29, 33, 53, 116], loss functions [32, 64, 65,

74], or two-stage re-ranking strategies [51–53, 58, 117].

In this work, we start by analyzing the Geographic Distance Sensitivity (GDS)

of VPR embeddings, that can be illustrated by a plot of the distribution of

embedding distances 𝑑𝑒 vs. geographic distances 𝑑𝑔 , as in the centre of Figure 5.1.

The plot shows two cases: in orange the distribution a typical VPR pipeline

would achieve, and in blue the distribution that would be obtained by a model

with enhanced GDS, result of training using our novel CliqueMining, which we

will introduce later. Note how a high variance and a small slope results in a high

https://github.com/serizba/cliquemining
https://github.com/serizba/cliquemining
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Figure 5.1: Geographic Distance
Sensitivity (GDS). We illustrate a

typical case of top-5 retrieval with-

out (left) and with (right) our pro-

posed CliqueMining. Note how

retrievals on the left are not prop-

erly sorted based on geographic

distance, impacting the recall for

the selected threshold (green cir-

cle). We conceptualize this effect

as GDS in the central plot, which

shows the distribution of descrip-

tor distances against geographic

distances. A low slope of the mean

(orange line) and a high disper-

sion (orange area), indicative of

low GDS, raise the probability of

an incorrect order. To address this,

we present CliqueMining, a novel

batch selection pipeline that in-

creases the GDS of a model (blue

line and area) and produces more

correct retrievals.

probability of incorrectly sorting the top-5 retrievals. The top-1 retrieval on the

left is, as it is written in the title, close but not there. By decreasing the variance

and increasing the slope the probability of an incorrect ordering decreases.

Figure 5.2 shows this phenomenon occurring in real datasets when using the

state-of-the-art baseline DINOv2 SALAD [16]. Observe how the top-5 retrievals

without our CliqueMining in MSLS [39] and Nordland [76] are not properly

sorted by real geographic distance. While two-stage re-ranking approaches

might assist in alleviating this, their local feature matching stage come with a

prohibitive storage and computational footprint. Additionally, recent methods

using only global features [16, 59] already surpass those that involve local features

for re-ranking. Although mining strategies also aim to improve performance

by compiling informative batches during training, existing strategies are not

specifically tailored to enhance GDS in densely sampled data.

In addition to analyzing GDS, in this work we propose a novel mining strategy,

CliqueMining, explicitly tailored to address it. Our hypothesis is that, in order

to boost the GDS, the training batches should include images of highly similar

appearance at small distances, that are not explicitly searched for in current

mining schemes. We achieve that by organizing our training samples as a graph

from which we extract cliques that represent sets of images that are geographi-

cally close. Our experiments show that, in this way, using CliqueMining on top

of a baseline model obtains substantial improvements in recall metrics.
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Figure 5.2: Top-5 retrievals for

DINOv2-SALAD [16] without

and with our CliqueMining in

MSLS [39] and Nordland [76].

Green frames represent correct

retrievals and red frames incor-

rect ones, under the standard 25-

meters (1 frame for Nordland) de-

cision threshold. Our CliqueM-

ining achieves a better sorting

of the retrievals with respect to

their geographical distance to the

query, which positively impacts

the recall.

5.1 Analysis of Geographic Distance Sensitivity

As already said, Figure 5.2 shows examples of DINOv2 SALAD [16] retrievals

on MSLS Train [39] and Nordland [76]. Although the recall@1 for these specific

queries is zero, dismissing the model’s performance as entirely inaccurate would

be unfair. Within the top-5 retrievals, some predictions are indeed correct, and

most incorrect predictions are relatively close to the decision threshold. These

examples uncover a common issue in VPR models: their inability to finely

discriminate between similar viewpoints. Note how our novel CliqueMining,

that we will describe in next sections, discriminates better for this particular

case.

We explain this phenomenon using the concept of GDS, i.e., the model’s ability

to assign smaller descriptor distances to pairs of images that are geographically

closer. VPR models should have a high GDS, that is, they should produce

descriptors that maximize the probability 𝑃(𝑑𝑒
𝑖
< 𝑑𝑒

𝑗
| 𝑑𝑔

𝑖
< 𝑑

𝑔

𝑗
). Seeking for a

high GDS requires two desiderata to hold.

(i) The expected value of the descriptor distance of a pair should be smaller than

that of a pair geographically further from the query 𝔼[𝑑𝑒
𝑖
− 𝑑𝑒

𝑗
| 𝑑𝑔

𝑖
< 𝑑

𝑔

𝑗
] < 0.

(ii) The dispersion of descriptor distances conditioned on a certain geographic

distance should be as small as possible 𝔼[(𝑑𝑒
𝑖
− 𝔼[𝑑𝑒

𝑖
| 𝑑𝑔

𝑖
])2 | 𝑑𝑔

𝑖
] → 0.

Failing to achieve these two leads to a high probability of retrieving an incorrect

order of candidates. We hypothesize that VPR models struggle to precisely rank

between closely spaced locations due to their limited GDS at small distance

ranges. This is because current training pipelines are effective at achieving

highly invariant representations that encode viewpoints coarsely, but not at

learning the subtle cues to disambiguate between close frames.
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Figure 5.3: Recall@K vs. deci-
sion threshold on MSLS Train

(val) and Nordland for DINOv2-

SALAD [16] without CliqueM-

ining. Observe how the steep

curve around the decision thresh-

old (green dashed line) indicates

a significant number of closely re-

trieved images. Boosting the GDS

of a model would alleviate this,

increasing its recall.

This effect can be further assessed in Figure 5.3, which shows the top-{1, 5, 10}
recall of the baseline DINOv2 SALAD for different threshold values. The vertical

green dashed lines represent the typical thresholds of 25 meters and 1 frame

used in MSLS and Nordland. Note how the recall, specially the recall@1, keeps

increasing for slightly larger values than the 25 meters and 1 frame thresholds.

This indicates that a significant fraction of false negatives is very close to the

decision threshold, which lowers the recall.

With our novel CliqueMining strategy, detailed in next section, the reader

will assess how we are able increase the GDS for small ranges (Fig. 5.5) and

consequently improve recall metrics, as we will show in the experimental

results.

5.2 Method: CliqueMining

Our novel mining strategy, CliqueMining, selects challenging batches according

to geographic and descriptor similarity criteria, alleviating the GDS issues

identified in Section 5.1. Figure 5.4 shows an overview of our method. To

effectively mine a challenging batch, we first build a graph of image candidates

(Subsection 5.2.1) and sample places from it (Subsection 5.2.2). Finally, we select

challenging pairs and train the network using the Multi-Similarity (MS) loss

(Subsection 5.2.3).

5.2.1 Graph Creation

In contrast with the sparse nature of viewpoint sampling in GSV-Cities [33],

we propose to use denser batches, with higher spatial continuity, so the the

network also learns the subtle changes resulting from small camera motion. To

effectively mine such challenging batches, we first create a graph, 𝐺 = (𝑉, 𝐸),
representing a cluster of candidates. Vertices from this graph, 𝑣𝑖 ∈ 𝑉 , are frames

from sequences with very similar appearance, and two vertices, 𝑣𝑖 and 𝑣 𝑗 , are

connected by an edge 𝑒𝑖 𝑗 ∈ 𝐸 if both frames lie within a given distance threshold

in meters, 𝜏.

𝐸 = {𝑒𝑖 𝑗 | 𝑑(𝑣𝑖 , 𝑣 𝑗) < 𝜏, ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉} (5.1)

To populate the graph, we consider all image sequences as defined in the MSLS

training set, as our place-based batches do not require a split between query

and database images. We start by sampling a reference sequence from a city,

𝑠𝑟𝑒 𝑓 , and subsequently, sampling 𝑆 more different sequences, {𝑠1 , . . . , 𝑠𝑆} based

on their similarity with 𝑠𝑟𝑒 𝑓 . For computational efficiency, we determine the
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Figure 5.4: Overview of
CliqueMining. First, we create a

graph of candidates by sampling

a set of sequences {𝑠1 , . . . , 𝑠𝑆}
that are similar to a reference one

𝑠𝑟𝑒 𝑓 (left). We then sample places

by finding cliques within the

graph (center). Observe that the

resulting batches contain very

similar looking places, which

boost the GDS (right).

similarity between two sequences by only comparing the descriptors of their

respective central frames. We incorporate every frame from these sequences into

the graph, which ensures the presence of adjacent frames within the batches.

Edges are determined by the Universal Transverse Mercator (UTM) locations of

each frame. Algorithm 1 summarizes this process.

Algorithm 1 Graph creation.

Initialize 𝐺 = (𝑉, 𝐸) as empty graph

Sample 𝑐𝑖𝑡𝑦
𝑉 ← {𝑣𝑖|𝑣𝑖 ∈ 𝑠𝑟𝑒 𝑓 }, 𝑠𝑟𝑒 𝑓 ∼ {𝑠|𝑠 ∈ 𝑐𝑖𝑡𝑦}
repeat S times

𝑠 ∼ 𝑃(𝑠|𝑠𝑟𝑒 𝑓 ) ∝ 𝑠𝑖𝑚(𝑠, 𝑠𝑟𝑒 𝑓 )
𝑉 ← 𝑉 ∪ {𝑣 𝑗|𝑣 𝑗 ∈ 𝑠}

end
𝐸← {𝑒𝑖 𝑗|𝑑(𝑣𝑖 , 𝑣 𝑗) < 𝜏, ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉}

5.2.2 Place Sampling

To construct a single batch, we start from the graph of candidates 𝐺, generated

as explained in Subsection 5.2.1. 𝐺 is a convenient representation for place

sampling, as it facilitates the identification of distinct viewpoints yet of highly

similar appearance, and labels are easily assigned based on connectivity. In

our pipeline, we mine batches of 𝑁 places, each place defined as a set of 𝐾

images, where each image is within a range 𝜏 of each other. Sampling a place is

equivalent to finding a clique, 𝐶, within 𝐺

𝐶 ∼ {𝐶 | ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝐶, 𝑒𝑖 𝑗 ∈ 𝐸, 𝐶 ⊆ 𝑉, |𝐶| = 𝐾}. (5.2)

Thus, to compile a batch of 𝑁 places, we iteratively extract 𝑁 cliques from 𝐺.

After finding each clique, all its frames, as well as their connected vertices are

removed from 𝐺. This prevents overlap in subsequent cliques, ensuring that

each sampled place is at least 𝜏 meters from each other. In the uncommon case

of exhausting all cliques in 𝐺, we create a new graph starting from a new 𝑠𝑟𝑒 𝑓
and continue the process. The resulting batches, an example of them shown

in Figure 5.4, showcase highly similar yet far apart images, illustrating the

effectiveness of our sampling to create difficult batches. Algorithm 2 gives an

overview of the sampling procedure.
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Algorithm 2 Graph sampling.

Input: Graph 𝐺 = (𝑉, 𝐸)
Initialize empty batch of images 𝐵
Initialize empty batch of labels 𝐿
for all 𝑛 from 1 to 𝑁 do

Sample clique 𝐶 ∼ {𝐶 | ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝐶, 𝑒𝑖 𝑗 ∈ 𝐸, 𝐶 ⊆ 𝑉, |𝐶| = 𝐾}
𝐵← 𝐵 ∪ 𝐶
𝐿← 𝐿 ∪ {𝑛}
𝐺← 𝐺 − {𝑣𝑖 ∪ 𝐴𝑑𝑗(𝑣𝑖)|𝑣𝑖 ∈ 𝐶}

end for

5.2.3 Training Pipeline

In practice, we mine a large set of batches offline and once, as described in

Subsection 5.2.1 and Subsection 5.2.2, and use them during all epochs. To do

this, we use the embeddings from a model pre-trained without CliqueMining.

Most mining strategies are typically updated every few iterations. However,

this increases the computational overhead, and for our CliqueMining we did

not observe any improvement by updating the batches.

In order to smooth the gradients from our hard training images, we combine

them with images from GSV-Cities. In this manner, we include per batch half of

the images from our CliqueMining and half from GSV-Cities, so the network

can learn both the fine-grain GDS and the sparse discriminative capabilities

from GSV-Cities.

As we use the MS loss [74], during training we use their online selection method

for weighted negative and positive pairs. A negative pair, {𝑥𝑖 , 𝑥 𝑗}, is selected

from a batch if its distance is lower than the hardest positive pair plus a margin,

𝜖,

||𝑥𝑖 − 𝑥 𝑗||2 < max

𝑑𝑒
𝑖𝑘
<𝜏
||𝑥𝑖 − 𝑥𝑘 ||2 + 𝜖, (5.3)

and, conversely, a positive pair is selected when

||𝑥𝑖 − 𝑥 𝑗||2 > min

𝑑𝑒
𝑖𝑘
≥𝜏
||𝑥𝑖 − 𝑥𝑘 ||2 − 𝜖. (5.4)

5.3 Experiments

In this section, we re-train state-of-the-art VPR baseline models using our

proposed CliqueMining. Evaluation on various benchmarks showcases the

increased discriminative capacity of the models. In the following, we describe

the implementation details, benchmarks used, quantitative and qualitative

results, as well as ablation studies.

5.3.1 Implementation Details

We use CliqueMining with the recent DINOv2 SALAD [16], the current state-of-

the-art VPR model as well as on MixVPR [29], a recent model with competitive

performance. For each of them, we use their codebase and rigorously follow

their training pipelines and hyperparameters. We use batches of size 60 in

DINOv2 SALAD and 120 in MixVPR, where half of the places come from our

pipeline and the other half from GSV-Cities. We create a new graph for every
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Method

NordLand MSLS Challenge MSLS Val Pitts250k-test

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD [5] 32.6 47.1 53.3 35.1 47.4 51.7 82.6 89.6 92.0 90.5 96.2 97.4

GeM [30] 21.6 37.3 44.2 49.7 64.2 67.0 78.2 86.6 89.6 87.0 94.4 96.3

CosPlace [6] 52.9 69.0 75.0 67.5 78.1 81.3 87.6 93.8 94.9 92.3 97.4 98.4

MixVPR [29] 58.4 74.6 80.0 64.0 75.9 80.6 88.0 92.7 94.6 94.6 98.3 99.0

EigenPlaces [107] 54.4 68.8 74.1 67.4 77.1 81.7 89.3 93.7 95.0 94.1 98.0 98.7

SelaVPR (global) [116] 47.2 66.6 74.1 69.6 86.9 90.1 87.7 95.8 96.6 92.7 98.0 98.9

SelaVPR (re-ranking) [116] 60.0 75.7 79.6 73.5 87.5 90.6 90.8 96.4 97.2 95.7 98.8 99.2

DINOv2 SALAD [16] 76.0 89.2 92.0 75.0 88.8 91.3 92.2 96.4 97.0 95.1 98.5 99.1

MixVPR [29] CM 69.6 80.7 83.5 65.6 77.1 79.2 88.8 93.9 94.6 91.8 96.7 98.1

DINOv2 SALAD [16] CM 90.7 96.6 97.5 82.7 91.2 92.7 94.2 97.2 97.4 95.2 98.8 99.3

Table 5.1: Comparison against
single-stage baselines and
SelaVPR as representative of
two-stage baselines. Observe

the significant increase in the

recall in MSLS and Nordland

when using CliqueMining (CM).

Both are the less saturated

datasets, hence with most room

for improvement, and the most

densely sampled, which is the

case our novel CliqueMining is

tailored for.

batch. We start by sampling 𝑠𝑟𝑒 𝑓 from the set of existing sequences. We then

sample 𝑆 = 15 sequences from the same city based on the descriptor similarity

of their central frames. Edges are assigned with 𝜏 = 25. Cliques are searched

using the NetworkX library
1

using the unrolled algorithm by Tomita et al. [118]. 1: https://networkx.org/

We create offline a large collection of 4000 batch examples before starting the

training, and at every iteration, we randomly select one of those. To create the

batches we use all the non panoramic images in the MSLS Training set. For

the ablation studies we divided this dataset in val and train subsets, setting

Melbourne, Toronto, Paris, Amman, Nairobi and Austin for val and the rest 16

cities for train.

5.3.2 Results

We evaluate the effect of our CliqueMining by comparing the performance of

two recent high-performing models, DINOv2 SALAD [16] and MixVPR [29],

with and without it at training time. We also benchmarked these against classic

methods, namely NetVLAD [5] and GeM [30], and recent performant baselines,

specifically CosPlace [6], EigenPlace [107], and SelaVPR [116]. Additionally, we

include in the comparison results of SelaVPR [116] with re-ranking, as it is the

current state of the art among two-stage techniques.

We report results on standard evaluation datasets. Nordland [76] is a continuous

video sequence taken from a train traveling through Norway across different

seasons. The difficulty of this dataset arises from the substantial appearance

differences between query (summer) and reference (winter), as well as the dense

temporal sampling. MSLS Challenge and Validation [39] is a large and dense

collection of dashcam images recorded in cities around the globe. The various

seasonals, time, and environmental changes depicted make it one of the least

saturated datasets in VPR. Pittsburgh-250k [106] is known for its significant

viewpoint changes, but current pipelines have highly saturated performance.

As previous works, we report recall@{1, 5, 10}, which measures the rate of

correct predictions among the top-{1, 5, 10} retrieved images. An image is

considered correct if it lies within a 25 meters-radius circle from the query,

or at most one frame apart for the Nordland dataset. Results are reported on

Table 5.1.

On Nordland, training with our CliqueMining significantly improves both

DINOv2 SALAD and MixVPR, obtaining, for the first time, a recall@1 bigger

than 90% (+14.7% over the closest baseline). This milestone highlights how our

hard batches help in boosting the network’s GDS. This is a crucial aspect in

https://networkx.org/
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Figure 5.5: Mean ± standard de-
viation of descriptor distances
against geographic distances,
without and with CliqueMining.
Our Clique Mining boosts the geo-

graphic local sensitivity for small

geographic distances, and flattens

it for large distances. This results

in higher discriminativity around

the decision threshold and better

metrics. Note the cut in distances

and values for high distances ag-

gregated at the right part.

Nordland, where the high similarity between video frames and the strict one-

frame distance threshold need outstanding sensitivity. Note that CliqueMining

also improves significantly the recall rates for MixVPR.

On MSLS Challenge and Validation, our CliqueMining with the DINOv2 SALAD

architecture improves over all previously reported results. The improvement is

most notable on the Challenge, where CliqueMining raises +7.7% the recall@1.

While training on the MSLS Train dataset contributes to these results, it is

noteworthy that SelaVPR, which also trains on MSLS, does not achieve a

comparable performance, even with re-ranking. The effect of CliqueMining on

MixVPR is dimmer, although it also improves over the baseline without it. We

argue that its global aggregation smooths out local details, which are critical for

raising the GDS.

On Pittsburgh-250k, our pipeline obtains a slight improvement over the base-

line DINOv2 SALAD and obtains comparable performance to SelaVPR with

re-ranking. We outperform SelaVPR without re-ranking, which is a more com-

parable baseline. Note, in any case, that SelaVPR is fine-tuned on Pittsburgh30k

before testing on Pittsburgh250k, while ours was trained in GSV-Cities and

MSLS. MixVPR with CliqueMining downgrades performance. Training on

MSLS data, where almost all images are forward-facing, has a small impact on

Pittsburgh250k, which exhibits substantial viewpoint variability.

Note how we sorted the datasets in Table 5.1 from more to less image density,

and how this also sorted naturally the recall@1 gains of CliqueMining from

bigger to smaller. This supports our observation that GDS issues are more

relevant the higher the image density, and that CliqueMining is able to improve

them. From these results we can also conclude that a substantial part of the

challenge in the less saturated VPR datasets (Nordland and MSLS) is associated

to GDS issues, which is a relevant insight.

Observe in Figure 5.5 the effect of CliqueMining on the GDS of the DINOv2-

SALAD model [16] in MSLS and Nordland, as a plot of the distribution of the

pairwise descriptor distances for different geographic distances. As sought,

the GDS is highly boosted (steep curve and low dispersion) by CliqueMining

for close geographic distances. Observe the similarity of this result with the

illustrative graph in Figure 5.1. Although not specifically tailored for, CliqueMi-

ning also reduces the dispersion for large distances, probably due to leveraging

batches with more informative gradients. This enables the model to correctly

sort candidates that are near, and still discriminate from those too far apart.

We finally remark the low computational footprint of our CliqueMining.

CliqueMining is a mining strategy for training, and hence does not increase
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at all the computational footprint at inference. This is in contrast to two-stage

methods, that increase it by a factor of several orders of magnitude. Additionally,

the overhead is modest at training. Our ablations shows that the graph creation

only needs to be done once before training, and there is no benefit in updating

it. In total, the computational overhead of CliqueMining roughly amounts to

only 20% of the total training time in our experiments.

5.3.3 Ablation Study

Method

MSLS Train (Val Subset)

R@1 R@5 R@10

DINOv2 SALAD [16] 76.3 85.1 87.3

Most-similar 81.61 ± 0.50 89.43 ± 0.53 91.02 ± 0.53

Weighted random sampling 81.98 ± 0.75 89.72 ± 0.22 91.12 ± 0.14

Uniform random sampling 80.40 ± 0.70 87.33 ± 0.88 88.95 ± 0.70

W/o MS mining 76.87 ± 0.46 83.92 ± 0.60 86.05 ± 0.76

Naïve GSV-Cities + MSLS 79.96 ± 0.46 89.71 ± 0.32 91.80 ± 0.30

Recompute Cliques 81.96 ± 0.59 89.64 ± 0.54 91.28 ± 0.39

Nordland

R@1 R@5 R@10

DINOv2 SALAD [16] 76.0 89.2 92.0

Weighted random sampling 88.22 ± 0.99 95.22 ± 0.45 96.52 ± 0.38

Naïve GSV-Cities + MSLS 68.27 ± 5.47 82.92 ± 4.99 86.81 ± 4.36

Table 5.2: Ablations. First row

shows the recall for the base

DINOv2-SALAD model. Note in

the next three rows that random

sampling based on sequence simi-

larity outperforms slightly a deter-

mininistic sampling of the most

similar ones and some more a uni-

form random sampling. The MS

mining also plays a role in the per-

formance. Note how training on

GSV-Cities + MSLS w/o CliqueM-

ining, which accounts for the do-

main change effect, still underper-

forms at R@1. Finally, note that

recomputing cliques every epoch

gives metrics that are similar to

computing them only once.

We conduct evaluations with different configurations of CliqueMining to assess

the importance of its different components. We base all our ablation studies on

the DINOv2 SALAD baseline.

CliqueMining or training on more data. One of the key contributions of this

work is to train state-of-the-art models on a combination of GSV-Cities and

MSLS. This raises the question of whether the observed improvements result

from training with more data or from CliqueMining. To evaluate this, we

re-train DINOv2 SALAD on a combination of GSV-Cities + MSLS without

CliqueMining. Thus, batches from MSLS are organized in triplets as usually

done in the literature. Table 5.2 shows how, although training on MSLS slightly

increases performance, using CliqueMining produces the best results, specially

for R@1. We also report, for this ablation, results on Nordland which show

more pronounced differences with CliqueMining. This suggest that naïvely

training on more data brings limited improvements. CliqueMining creates

challenging batches that improve the sensitivity of the model and its recall.

Besides, CliqueMining organizes the images in places, so every image can

simultaneously act as an anchor, positive or negative, increasing the number of

pairwise relations on a batch.

Geographic distance threshold 𝜏. We tested the effect of the 𝜏 values in the

range 10-30. As shown in Figure 5.6, using the typical decision threshold value

𝜏 = 25 achieves the best performance.

MS mining. We built our CliqueMining on top of [33], keeping its online mining

(Equations 5.3 and 5.4). Deactivating it, keeping only our CliqueMining, has a

detrimental effect (see Table 5.2), which indicates that both mining strategies

are compatible.

Sequence sampling. We evaluate the effect of different sampling strategies to

obtain {𝑠1 , . . . , 𝑠𝑆} during the graph creation. We specifically try a weighted
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Figure 5.6: Recall@1 on MSLS
Train (val) for different values of
𝝉. Note how, reasonably, 𝜏 = 25

meters, which is equal to the deci-

sion threshold, is the best value.

sampling according to similarity, selecting the top 𝑆 most similar sequences, or

randomly. Table 5.2 shows that all three sampling strategies obtain very similar

results, but using the most similar sequences produces the best. We argue that

the online mining from Equations 5.3 and 5.4 reduces the actual differences

between the used selection criteria, as it will further select the hardest pairs.

Besides, given the length of some of the sequences, more than one clique might

be sampled from the same sequence, reducing the need to find other similar

ones.

Updating the mining every epoch. Commonly done in literature, updating the

mining after every epoch using the recently updated weights can provide some

benefits to performance. As shown in Table 5.2, obtained recalls are comparable,

and computing the mining after every epoch is computationally expensive.

5.4 Limitations

The main limitation of CliqueMining is that it is specifically tailored for VPR, and

hence it will not be of use for general image retrieval. In addition, CliqueMining

addresses GDS issues, that are mostly relevant for places that are densely

sampled with images. We already reported in Table 5.1 the diminishing returns

as the sampling density decreases in the benchmarks we used. However, this

limitation is softened by the wide range of potential use cases falling into this

condition, and also by the remarkable boost in recall@1 in the most dense

sampling cases (+14.7% for Nordland).

Additionally to the above, our CliqueMining is strongly dependent on the

existence of GDS issues. Even if the dataset is densely sampled, there could be
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Figure 5.7: Recall@K vs. decision
threshold on SF-XL for DINOv2-

SALAD [16] without CliqueM-

ining. Observe how the recall

curves are almost flat beyond the

decision threshold (green dashed

line), indicating a low false nega-

tive rate due to limited GDS. Com-

pare it against the recall curves in

MSLS and Nordland in Figure 5.3.

In this case, enhancing the GDS

will not result in better metrics.
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a lack of GDS issues, as when viewpoint changes account for the majority of

variations. In this cases, the model fails to retrieve close samples, and therefore

CliqueMining would not positively impact its recall. We observed this in the

recent SF-XL [6], a massive dataset of images from San Francisco, often used to

test VPR at scale. Figure 5.7 characterizes the recall in this dataset against the

decision threshold. Observe how, in contrast to Figure 5.3, the recall is almost

flat in the region immediately after the decision threshold. Enhancing the GDS

is not expected to have any effect in this dataset, as the rate of false negatives

due to this reason is very small. Even if this is a limitation, we would argue in

our favour that every mining strategy is strongly dependent on the data, but in

the case of our CliqueMining we have characterized the conditions in which it

should or should not offer an improvement.

5.5 Conclusions

In this chapter we have identified, formulated and analyzed deficiencies in

the GDS of current VPR models. Specifically, we found that they struggle to

correlate descriptors and geographic distances for close range views. Based

on that, we propose CliqueMining, a tailored batch sampling that selects

challenging visually similar places at close ranges, and in particular around

the decision threshold. CliqueMining forces the model to incorporate a finer

grading of the geographic distances in the embedding. Mining such hard

batches is equivalent to finding cliques in a graph of similar image sequences

where connectivity represents spatial proximity. Our evaluation of two recent

models with and without CliqueMining confirms a boost in the GDS which

in turn also boosts the recall. The boost is substantial on densely sampled and

unsaturated benchmarks like MSLS Challenge or Nordland, where training

with CliqueMining brings unprecedented results.
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Más ven cuatro ojos que dos.

Four eyes see more than two.

-Spanish proverb

In our daily lives, 3D perception and reasoning occur continuously, allowing us

to interact seamlessly with our environment every time we navigate complex

spaces, avoid obstacles, or manipulate objects. Humans instinctively enhance

this spatial awareness by leveraging multiple perspectives—adjusting our

viewpoints, moving around, and leveraging our stereo vision to gather depth

information at close ranges.

These innate human abilities have long been sought after in the fields of robotics

and computer vision. The capacity to perceive and reason in 3D is crucial

for machines to perform tasks analogous to those humans do effortlessly, like

obstacle avoidance in autonomous driving [119, 120], dexterous manipulation in

robotics [121], or 3D layout recovery in augmented reality [122]. It is of special

interest to perform such tasks with just visual data, as such can be obtained

using cheap, readily available cameras, eliminating the need for more expensive

sensors.

One of the fundamental tasks in 3D perception is depth estimation. Depth esti-

mation involves determining the distance of objects from a particular viewpoint,

effectively creating a depth map of the scene. An appealing and widespread

approach is to rely solely on single images [10–12], training deep learning models

on vast datasets to infer dense depth maps based on visual clues. This method

benefits from the versatility and simplicity of requiring just one single image,

without more expensive setups, which is advantageous for both training and

inference. However, it faces the challenge of being an ill-posed configuration,

where multiple depth hypotheses may correspond to the same 2D image, leading

to potential inaccuracies and ambiguities.

For this reason, just as humans seek multiple points of view to enhance their

perception, multi-view depth estimation techniques utilize several images to

improve accuracy. In multi-view stereo, features across images are matched

to triangulate depth, providing accurate, consistent, and scaled 3D informa-

tion [123–125]. While these approaches benefit from geometric constraints and

can offer higher accuracy, they require precise knowledge of camera poses,

are more difficult to train, and can struggle with non-Lambertian surfaces or

changes in illumination, which affect feature matching.

This part of the thesis focuses on leveraging multi-view cues in dense depth

estimation. In Chapter 8, we enhance single-view models on sequences of images

by doing a TTR. By using a SfM reconstruction as pseudo ground truth, the

models are able to predict more accurate guesses, especially at large distances.

In Chapter 9, we propose a general-purpose large model for multi-view depth

estimation. Drawing inspiration from recent advancements in single-view depth

prediction, we train a ViT on a varied array of datasets. Aiming to overcome

some of the limitations of previous multi-view systems, our proposed model

can work with any range of depths without an initial guess, can handle dynamic

objects, and has strong generalization performance.
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In this chapter we discuss related literature about single-view depth (Section 7.1),

multi-view depth (Section 7.2) and test-time-refinement (Section 7.3).

7.1 Single-View Depth Learning

Although there exists a large corpus of work on single-view depth under certain

assumptions on the scene geometry, e.g. [126–131], we focus here on approaches

that are mainly based on machine learning and target general scenes.

7.1.1 Supervised Methods

Several early works addressed single-view depth learning either directly from the

image [132] or via semantic labels [133] before the deep learning era. The seminal

works by Eigen et al. [10, 134] significantly improved the prediction accuracy by

training deep networks supervised with ground-truth depth from range sensors.

Since then, single-view depth networks have received significant attention from

the research community, focusing on improving the performance by using

more sophisticated architectures and losses, e.g., [135–141]. A re-formulation of

the problem as an ordinal regression has led to further improvement [11, 142,

143]. Recently, Bae et al.[144] fuse the single-view depths from multiple images,

but differently from our method described in Chapter 8 without a TTR of the

network.

Building on highly advanced and effective image backbones [54], more recent

monocular methods have focused on making general-purpose depth estimation

models, which aim to work on arbitrary scenes [145, 146]. Further works have

scaled up the size of models and datasets, training on combinations of real

and/or synthetic data [147, 148], and have used stronger image-level priors [149,

150]. One of the limitations of models trained from stereo-image-derived

supervision without known baselines [146] or human annotations [145] is that

these only enable a relative, and not metric (e.g. in meters), depth prediction.

Other monocular models predict metric depth [12, 151–154]. Not only does this

rely on appropriate training data, but also requires an understanding of camera

intrinsics, which are often a required additional input to the network.

Conventional monocular methods are inherently limited by only incorporating

information from single views at inference time, even when multi-view infor-

mation is available [155]. On the other hand, with recent advances, they can still

provide a very valuable signal when only one image is available. As in [156–158],

in Chapter 9, we combine features extracted from a monocular depth model

with a multi-view cost volume to better leverage monocular and multi-view

cues.
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7.1.2 Self-supervised Methods

As ground truth depth annotations are uncommon, self-supervised approaches

emerged as an alternative, exploiting multi-view photometric consistency [159,

160]. Attracted by the convenience of training without depth labels, many works

have further focused on addressing this paradigm, e.g., [161–167]. Close to

our work from Chapter 8, SfM has been used as a supervisory signal during

training, but limited to probabilistic networks [168], or using disparities [169]

that require stereo images. Among self-supervised works, Monodepth2 [170],

which proposed a robust loss to handle occlusions and discard invalid pixels,

is of particular relevance. Monodepth2 is the base of most state-of-the-art ap-

proaches, and specifically of the baselines we chose to validate our refinement on:

CADepth [171], that uses self-attention to capture more context, DIFFNet [172],

that applies feature fusion to incorporate semantic information, and Many-

Depth [155], that leverages more than one frame at inference to improve the

predictions.

7.2 Multi-View Depth Learning

Multi-View Stereo (MVS) algorithms estimate depth from posed multi-view

images using epipolar geometry [173]. Given calibrated cameras, early meth-

ods estimated depth by matching image patches [174, 175]. Subsequently, deep

learning approaches were introduced, first for stereo matching [176] and later im-

proved via end-to-end learning, typically using plane-sweep cost volumes [123,

124, 177–183]. Subsequent methods introduced advances in architectures [125,

184, 185], increased robustness to occlusion and moving objects [186–188], inte-

grated temporal information [189], improved model efficiency [190, 191], jointly

estimated camera pose [192, 193] and ingested prior geometry estimates to

improve depths [194].

7.2.1 Generalization to Unseen Domains

With some exceptions [195], earlier stereo and MVS methods were traditionally

both trained and tested on the same dataset/domain, and were limited in their

ability to generalize to out-of-distribution data. This domain generalization

issue is a consequence of most performant learning-based MVS methods being

data-hungry. Approaches such as training on synthetic [196, 197] or pseudo-

labeled depth [198] can be effective, but so far, struggle to span a diverse range

of scene types and scales. Self-supervised approaches can be trained without

depth supervision, but current methods produce inferior depths compared to

fully supervised approaches [199–201]. Concurrent with our work, [202, 203]

trained large binocular stereo models on large synthetic datasets.

7.2.2 Adaptive Cost Volumes.

One of the challenges in developing a general-purpose domain-agnostic MVS

method is that different scenes can contain wildly different depth ranges, e.g.
indoor scenes are limited to a few meters, while outdoor ones can span much

larger distances. This is a problem as conventional cost volumes require a

known depth range, which is typically just estimated based on the minimum
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and maximum depth values in the training set. As a result, there is a need for

cost volumes that are not restricted to a pre-defined range or bins, and instead

are adaptive. In the context of self-supervised learning with unscaled poses,

[155] estimated bin ranges at training time via an exponential moving average of

the depth predictions. Another approach is to predict bin centers iteratively in a

coarse-to-fine manner, where the outputs from the previous iteration are used

to seed the range in the next [181, 204, 205]. Alternatively, the bin offsets can be

predicted by a learned network [206] or from estimated depth uncertainty [207,

208]. In Chapter 9, we estimate cost volume depth ranges to enable us to adapt

to any range of depths, while prior work has done this when the test time range

is known, but they wish to reduce computation or enhance detail.

7.3 Test-Time Refinement

In Chapter 8, we employ a TTR of the networks. Here we describe previous

attempts and literature on the field.

Multi-view consistency is the basis for both self-supervised depth learning

and bundle adjustment [209], this last one naturally occurring at test time.

Inspired by that, TTR was proposed [210, 211], updating the network with

the same self-supervised losses from training. Similarly, McCraith et al. [212]

showed the benefits of encoder-only fine-tuning and proposed two TTR modes:

sequence- and instance-wise. Similar approaches were presented by Watson

et al. [155], with multiple input images for the network, Shu et al. [166], with a

feature-metric loss, and Kuznietsov et al. [213], using a replay buffer. All these

TTR methods inherit the small baseline limitations from photometric losses,

showing small improvements for medium and large depths for which close

views produce small parallax. At these depths, our method from Chapter 8

introduces wide baseline cues, due to the higher invariance of features matching

at wide baselines. This leads to significant improvements over the state of the

art.

Tiwari et al. [214] iterates over optimizing the parameters of a single-view depth

network and running pseudo-RGBD SLAM for pose estimation, but their align-

ment ignores the depth distributions, which results in smaller improvements

compared to ours. Luo et al. work [215] is more related to ours, using SfM

and optical flow as geometric constraints. However, despite heavy optimization

(taking up to 40 minutes for a sequence of less than 250 frames), their TTR

cannot improve over baseline networks on KITTI. Instead of defining derived

constraints, we directly optimize the encoder using the sparse reconstruction as

pseudo ground truth, resulting in a lighter and more effective pipeline.
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The code is available at https://

github.com/serizba/SfM-TTR

Estimating a dense depth map from a single view is geometrically ill-
posed, and state-of-the-art methods rely on learning depth’s relation with
visual appearance using deep neural networks. On the other hand, SfM
leverages multi-view constraints to produce very accurate but sparse maps,
as matching across images is typically limited by locally discriminative
texture. In this work, we combine the strengths of both approaches by
proposing a novel test-time refinement method, denoted as SfM-TTR, that
boosts the performance of single-view depth networks at test time using
SfM multi-view cues. Specifically, and differently from the state of the
art, we use sparse SfM point clouds as test-time self-supervisory signal,
fine-tuning the network encoder to learn a better representation of the test
scene. Our results show how the addition of SfM-TTR to several state-
of-the-art self-supervised and supervised networks improves significantly
their performance, outperforming previous TTR baselines mainly based on
photometric multi-view consistency.

Obtaining accurate and dense depth maps from images is a challenging research

problem and an essential input in a wide array of fields, like robotics [216],

AR [215], endoscopy [217], or autonomous driving [120]. Single-view per-pixel

depth estimation is even more challenging, as it is geometrically ill-posed in

the general case. However, in the last decade, intense research on deep models

applied to this task has produced impressive results, showing high promise for

real-world applications.

Single-view depth learning was initially addressed as a supervised learning

problem, in which deep networks were trained using large image collections

annotated with ground truth depth from range (e.g., LiDAR) sensors [134, 135].

At present, this line of research keeps improving the accuracy of single-view

depth estimates by better learning models and training methods, as illustrated

for example by [11, 218].

In parallel to improving the learning side of the problem, several works are

incorporating single- and multi-view geometric concepts to depth learning,

extending its reach to more general setups. For example, [219, 220] propose

camera intrinsics-aware models, enabling learning and predicting depths for

very different cameras. More importantly, many other works (e.g. [170]) use

losses based on multi-view photometric consistency, enabling self-supervised

learning of depth and even camera intrinsics [221].

Incorporating single- and multi-view geometry into depth learning naturally

links the field to classic research on SfM [175, 222], visual odometry [223, 224]

and visual SLAM [13, 95]. These methods typically produce very accurate

but sparse or semi-dense reconstructions of high-gradient points using only

multi-view geometry at test time. Among the many opportunities for cross-

fertilization of both fields (e.g., using depth networks in visual SLAM [225] or

SfM for training depth networks [168, 169, 226]), our work focuses on using SfM

for refining single-view depth networks at test time.

https://github.com/serizba/SfM-TTR
https://github.com/serizba/SfM-TTR
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Single-View
Depth NetworkStructure from Motion

SfM-TTR

Re ned depth predictions

Scale alignment

Input sequence

Figure 8.1: SfM-TTR overview.

Our approach assumes an exist-

ing pre-trained depth network

and an input sequence at test

time. We estimate a SfM 3D re-

construction using the input se-

quence, and depth maps using a

single-view depth network. We

align the SfM point cloud with

the network’s depth to obtain a

pseudo-ground truth to refine the

network encoder, improving its

representation of the test scene

and producing significantly more

accurate depth estimates.

As single-view depth applications typically include a moving camera, several

recent works incorporate multiple views at inference or refine single-view depth

networks with multi-view consistency cues [144, 155, 166, 210, 212, 214, 215].

Most approaches, however, rely mainly on photometric losses, similar to the

ones used for self-supervised training. These losses are limited to be computed

between close views, creating weak geometric constraints. Our contribution in

this chapter is a novel method that, differently from the others in the literature,

uses exclusively a SfM reconstruction for TTR. Although SfM supervision is

sparser than typical photometric losses, it is also significantly less noisy as it has

been estimated from wider baselines. Our results show that our approach, which

we denote as SfM-TTR, provides state-of-the-art results for TTR, outperforming

photometric test-time refinement (Ph-TTR) for several state-of the-art supervised

and self-supervised baselines.

8.1 Method: SfM-TTR

Our SfM-TTR takes any single-view depth network, trained either supervised

or self-supervisedly, and fine-tunes it for the test data by a three-stage process.

As a brief summary, we first estimate a sparse feature-based reconstruction

of the scene from multiple views (Subsection 8.1.1) and predict depth outputs

with the network (Subsection 8.1.2). Then, we align the scale of the sparse

point cloud and the network’s depth (Subsection 8.1.3). Finally, we fine-tune

the network using the depths of the aligned sparse point cloud as supervisory

signal (Subsection 8.1.4).

8.1.1 Multi-View Depth from SfM

We perform a 3D reconstruction of the target scene using an off-the-shelf SfM

algorithm. In our current implementation we use COLMAP [175], as it shows a

high degree of accuracy and robustness in a wide variety of scenarios, although

alternative SfM or visual SLAM implementations could also have been used [95,

227, 228].

From a set of images I= {I1 , . . . , I𝐾}, I𝑘 ∈ ℝ𝑤×ℎ×3 ∀𝑘 ∈ {1, . . . , 𝐾} of a scene,

COLMAP returns a set of 𝐽 6-degrees-of-freedom poses P = {P1 , . . . , P𝐽}, P𝑗 =( R𝑗 t𝑗
0 1

)
∈ SE(3) ∀𝑗 ∈ {1, . . . , 𝐽}, 𝐽 ≤ 𝐾, corresponding to the cameras that the
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method was able to register, and the set of 3D keypoints X= {X1 , . . . ,X𝐼}, X𝑖 ∈
ℝ3 ∀𝑖 ∈ {1, . . . , 𝐼} that were reconstructed, all of them in a common reference

frame. The camera with pose P𝑗 observes a subset of 𝐿 𝑗 points from the total set

of 3D points X𝑗 = {X1 , . . . ,X𝐿𝑗} ⊂ X. COLMAP final estimates are obtained by

minimizing the sum of the squared reprojection errors

∑𝐽

𝑗=1

∑𝐿𝑗

𝑙=1
r2

𝑙 , 𝑗
.

The depth of each of the 𝑙th point in the 𝑗th camera frame is computed as

𝐷SfM

𝑙 , 𝑗
= e⊤

3

(
R⊤𝑗

(
X𝑙 − t𝑗

) )
(8.1)

where e3 =
(
0 0 1

)⊤
is the unit vector in the optical axis direction. We

will group the depths for the sparse set of points X𝑗 in the set DSfM

𝑗
=

{𝐷SfM

1, 𝑗
, . . . , 𝐷SfM

𝐿𝑗 , 𝑗
}, 𝐷SfM

𝑙 , 𝑗
∈ ℝ>0 ∀𝑙 ∈ {1, . . . , 𝐿 𝑗}, and the depths for all im-

ages in DSfM = {DSfM

1
, . . . , DSfM

𝐽
} ∀𝑗 ∈ {1, . . . , 𝐽}.

8.1.2 Single-View Depth from Neural Networks

Our SfM-TTR method can be applied to any architecture, and hence its predicted

depth DNN

𝑗
∈ ℝ𝑤×ℎ

for an image I𝑗 can be generally formulated as

DNN

𝑗 = ℎ
(
𝑔
(
I𝑗 , 𝜽𝑔

)
, 𝜽ℎ

)
(8.2)

where ℎ(·) and 𝑔(·) stand respectively for the decoder and encoder parts of the

deep networks, and 𝜽ℎ and 𝜽𝑔 their respective weights, that have been trained

either supervised or self-supervisedly.

Note that the depths DSfM

𝑗
and DNN

𝑗
correspond to the same image I𝑗 but are

respectively sparse and dense, having hence a different number of elements,

and they may have different scales. The scale is unobservable by COLMAP

and self-supervised networks, while it is learned from the training data by

supervised networks.

In order to estimate the relative scale between DSfM

𝑗
and DNN

𝑗
and refine at

inference time the deep network, we have to select from DNN

𝑗
those elements

corresponding to the sparse depth of DSfM

𝑗
. For a general element 𝑙, we use the

sampling operator [·] to access the depth corresponding to the pixel coordinates

p𝑙 , 𝑗

𝐷NN

𝑙 , 𝑗
= DNN

𝑗

[
p𝑙 , 𝑗

]
(8.3)

where p𝑙 , 𝑗 is obtained from the coordinates of the 3D points X𝑙 ∈ X𝑗 and the

camera pose P𝑗 and applying the pinhole projection function, that we will

denote as 𝜋(·)

p𝑙 , 𝑗 =
(
𝑢 𝑣

)⊤
𝑙 , 𝑗

= 𝜋
(
R⊤𝑗

(
X𝑙 − t𝑗

) )
(8.4)

We finally group the depths predicted by the deep network for the sparse set of

points X𝑗 in a joint set DNNs

𝑗
= {𝐷NN

1, 𝑗
, . . . , 𝐷NN

𝐿𝑗 , 𝑗
}, 𝐷NN

𝑙 , 𝑗
∈ ℝ>0 , and the depths

for all images in DNNs = {DNNs

1
, . . . , DNNs

𝐽
} ∀𝑗 ∈ {1, . . . , 𝐽}.
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8.1.3 Scale Alignment

Scale alignment is not trivial in our setup, as both DSfM
and DNNs

are affected

by heteroscedastic (depth-dependent) inlier noise and contain a non-negligible

rate of outliers. In addition, we are interested in removing outliers from DSfM
,

but we do want to keep them in DNNs
, as then our SfM-TTR can reduce their

errors. We developed a novel scale alignment method with two stages: we make

a first fit with a strict inlier model to obtain an accurate relative scale, and then

relax it in the second stage to select the points used for self-supervision from

DSfM
.

In the first stage we use RANSAC [229], computing 1D model instantiations,

𝑠𝑙 , 𝑗 = 𝐷NN

𝑙 , 𝑗 /𝐷SfM

𝑙 , 𝑗
and consider in the inlier set DNNs✓ ⊂ DNNs

and DSfM✓ ⊂ DSfM

all depths pairs {𝐷NN

𝑙′ , 𝑗′ , 𝐷
SfM

𝑙′ , 𝑗′ } for which the following holds(
𝑠𝑙 , 𝑗 · 𝐷SfM

𝑙′ , 𝑗′ − 𝐷
NN

𝑙′ , 𝑗′

)
2

𝑠𝑙 , 𝑗 · 𝐷SfM

𝑙′ , 𝑗′
≤ 𝜏 (8.5)

where 𝜏 is the inlier threshold.

In most occasions, the distribution of depths in the image is highly unbalanced,

with higher frequencies for closer depths. This, together with the heteroscedas-

ticity of the depth errors (errors are smaller for closer depths), causes that

the frequently used median scale [215] corresponds to close points, biasing

the estimation. Using least squares with all the inlier set {DNNs✓ , DSfM✓} is

not a good alternative either, the fit will be biased in this case towards large

depths as they have larger errors. For these reasons, we use weighted least

squares to obtain a refined estimate of 𝑠 with the depths 𝐷NN✓
𝑙 , 𝑗
∈ DNNs✓

and

𝐷SfM✓
𝑙 , 𝑗

∈ DSfM✓

𝑠 = argmin

𝑠

∑
𝑗

∑
𝑙

𝑤𝑠
𝑙, 𝑗

(
𝑠 · 𝐷SfM✓

𝑙 , 𝑗
− 𝐷NN✓

𝑙 , 𝑗

)
2

(8.6)

where 𝑤𝑠
𝑙, 𝑗

is a per-pixel weight, that should be proportional to the inverse of

the expected depth variance 𝜎2

𝑙 , 𝑗
. Under the reasonable assumption of similar

baselines and matching noises for all reconstructed points, it is well known

that the variance grows with the depth squared [222] and hence we can use as

weights

𝑤𝑠
𝑙, 𝑗

= 1/𝜎2

𝑙 , 𝑗
≈ 1/

(
𝐷NN✓
𝑙 , 𝑗

)
2

. (8.7)

Finally, we use 𝑠 𝑗 from the optimization in Equation 8.6 to obtain the final set

of inliers {DNNs✓✓ , DSfM✓✓} that we will use for our SfM-TTR. We proceed

similarly to Equation 8.5, but this time using the absolute value in the numerator,

relaxing in this manner the model and favoring the inclusion of noisy depth

predictions from the network depth set DNNs
in order to have the chance to

improve them at test time.
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8.1.4 Test-Time Refinement

We refine the target network for the selected scene by updating its parameters

using the depths in the final inlier set DSfM✓✓
as supervision. As in [215], we

optimize over the complete scene, thus obtaining a refined network with more

consistent predictions across all views. This is different from other TTR works,

such as [212], in which they refine a different network for each frame of the

sequence.

Each batch update works as follows. We sample an image I𝑗 from the sequence

and do a feed-forward pass through the network to obtain the depth prediction

DNN

𝑗
. Then we supervise the prediction with the sparse pseudo ground truth

DSfM✓✓
𝑗

. This supervision is weighted according to the reliability of the recon-

structed 3D points, that we approximate based on their reprojection errors as

𝑤𝜽
𝑙 , 𝑗

= exp(−∥r𝑙 , 𝑗∥2

2
).

L=
1

|DSfM✓✓
𝑗

|
∑
𝑙

𝑤𝜽
𝑙 , 𝑗
∥𝑠 · 𝐷SfM✓✓

𝑙 , 𝑗
− 𝐷NN✓✓

𝑙 , 𝑗
∥1 (8.8)

As state-of-the-art depth networks already produce sharp predictions with

well-defined object contours, we argue that our refinement should only optimize

the internal understanding of the scene. Hence, we follow a similar approach

as [212] and only update the encoder parameters during the TTR, keeping the

rest of the network fixed. Our TTR optimization can be hence formulated as

𝜽̂𝑔 = argmin𝜽𝑔
L. In this manner, the frozen decoder ℎ(·) keeps producing

sharp predictions, but now they stem from a more informed representation of

the underlying scene.

8.2 Experiments

8.2.1 Implementation Details and Baselines

We validate our proposed SfM-TTR by applying it to different state-of-the-art

baselines. Specifically, we provide evaluations with the baselines CADepth [171],

DIFFNet [172], and ManyDepth [155] as representative of self-supervised ap-

proaches. We also implemented it on AdaBins [11] to benchmark SfM-TTR’s

performance also with a representative supervised model. The same set of hy-

perparameters was used for SfM-TTR with all baselines, achieving a substantial

improvement in all of them without requiring individual tuning.

For the sparse reconstruction, we run COLMAP [175] with its default parameters,

using a single pinhole camera model per sequence and sequential matching.

Although we use all available images from a sequence to create the sparse

reconstruction, the network is only optimized with the target frames of the

evaluation. Regarding our scale alignment, we detect outliers running RANSAC

for 20 iterations with inlier threshold 𝜏 = 0.5. For the TTR optimization, we use

Adam [230] applied to the encoder parameters, 𝜽𝑔 , with a learning rate of 10
−4

for 200 steps.

For comparison, we also implemented the instance-wise photometric refinement

(Ph-TTR) from ManyDepth [155]
1
, based on the work of McCraith et al. [212], 1: The TTR code was not available

in the authors’ repository at the

time of writing this document.

which updates the weights of the network encoder during inference using the
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photometric loss from the training. Table 8.1 validates our implementation,

showing similar performance as the one reported by the authors in [155].

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
ManyDepth [155] Ph-TTR ⋄ 0.087 0.696 4.183 0.167

ManyDepth [155] Ph-TTR ∗ 0.088 0.681 4.122 0.168

Table 8.1: ManyDepth Ph-

TTR [155] (⋄) and our own

implementation (∗) obtain similar

metrics.

8.2.2 Dataset

We run all evaluations on the KITTI dataset [119], the common benchmark

for single- and multi-view depth learning. Regarding the KITTI ground truth

for depth learning evaluations, the literature is split among those following

Eigen et al. [10], with reprojected LiDAR point clouds, and those using the

newer and improved ground truth [231], which aggregates 5 consecutive frames

and handles dynamic objects. Given the higher reliability of the new ground

truth, we used it to evaluate all the baselines on the Eigen test split with all the

images that contain ground truth, a total of 652. We provide evaluation without

and with the Eigen cropping, see Table 8.4 and Table 8.5. For fairness and

completeness, as some methods present results with the old ground truth, we

also include an evaluation with the LiDAR reprojected depths, on the complete

Eigen split with 697 images. We report additional results directly taken from

the corresponding papers, see Table 8.6.

In a few of the KITTI test scenes the camera motion is insufficient for proper

SfM convergence. Our SfM-TTR cannot refine the depth in those cases, but for a

fair comparison, we included these sequences in the global metrics using the

results of the network without SfM-TTR.

Note that although we have presented a novel scale alignment, for the sake of

fairness we align the self-supervised predictions and the ground truth with the

per-image median, as commonly done [155, 170]. Also following the common

evaluation practices, we set a maximum depth of 80 meters.

8.2.3 Comparisons against Baselines

We demonstrate the benefits of our method by comparing the results of applying

a photometric refinement (Ph-TTR) and ours (SfM-TTR) on the baseline networks.

Table 8.4 shows how our SfM-TTR consistently and significantly improves

the predictions of all networks, obtaining superior performance than the

photometric refinement. Besides, Ph-TTR fails to improve over CADepth without

TTR. The most likely reason is that it requires individual hyperparameter tuning,

which was not required for our SfM-TTR.

The advantages of our proposed method are especially noticeable for large

depths, where Ph-TTR cannot provide a good supervision signal due to the

limited parallax between close frames. Our refinement, instead, leverages

SfM, which triangulates points from the complete sequence. This produces

better estimates for distant points and better supervision, resulting in a drastic

reduction of the RMSE by up to 30%. This effect is clearly visible in Figure 8.2.

Although smaller depths show comparable performance for Ph-TTR and SfM-

TTR, the photometric loss does not help in areas with large depths. SfM-TTR,

instead, provides a significant gain in performance in those areas.
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Figure 8.2: Error metrics for dif-
ferent depths with DIFFNet. Our

SfM-TTR (thick blue) gives a sub-

stantial improvement over No-

TTR (dashed black) and Ph-TTR

(thin red) at medium and large

depths. Ph-TTR offers some im-

provement over No-TTR at close

depths, where the small baselines

of photometric losses are infor-

mative, but it does not improve

or it is slightly worse at medium

and large depths. The metrics

𝛿 < 1.25
2

and 𝛿 < 1.25
3

are not

plotted, as differences are small

(see for example Table 8.4).

The best results are obtained when applying our SfM-TTR to DIFFNet, even

though the original DIFFNet without TTR performs slightly worse than Many-

Depth. We believe that our TTR has a smaller effect on ManyDepth because

it already leverages scene information by using multiple frames at inference

time. SfM-TTR can also improve results on AdaBins, for which Ph-TTR cannot

be implemented, as AdaBins does not provide a pose estimation module. This

further demonstrates the effectiveness of directly optimizing for the 3D points

from COLMAP.

Qualitatively, Figure 8.5 shows how predictions after SfM-TTR keep looking

sharp with well-defined boundaries despite the sparsity of the pseudo-ground

truth. We argue that optimizing the encoder enables a better understanding of

the scene while freezing the decoder maintains the previously learned sharpness

of the predictions. The error maps from Figure 8.4 reveal the differences between

refinements, showing how our method can effectively reduce errors in regions

where Ph-TTR cannot. The positive effect of SfM-TTR in distant points is visible

in Figure 8.3, where large depths move closer to the ground truth after our

refinement.

Regarding runtime efficiency, our method requires roughly 2 seconds per frame

during the optimization, similar to Ph-TTR, and faster than other multi-view

TTR that also use large baselines [214, 215].
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Figure 8.3: Depth predictions
and ground truth before and
after SfM-TTR with DIFFNet.
The red dots stand for predicted

pixel depths on a KITTI sequence

with DIFFNet, the black dashed

line stands for zero error. Note

how after SfM-TTR the red dots

gather closer to the dashed black

line, illustrating that the predicted

depths are closer to the ground

truth ones.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
AdaBins [11] 0.072 0.325 3.134 0.112

AdaBins [11] + SfM-TTR (full model) 0.062 0.204 2.297 0.092

AdaBins [11] + SfM-TTR (encoder) 0.060 0.204 2.260 0.091
ManyDepth [155] 0.064 0.345 3.116 0.103

ManyDepth [155] + SfM-TTR (full model) 0.059 0.293 2.655 0.096

ManyDepth [155] + SfM-TTR (encoder) 0.057 0.294 2.648 0.094
CADepth [171] 0.078 0.403 3.432 0.119

CADepth [171] + SfM-TTR (full model) 0.069 0.321 2.824 0.104
CADepth [171] + SfM-TTR (encoder) 0.068 0.328 2.821 0.106

DIFFNet [172] 0.071 0.361 3.230 0.110

DIFFNet [172] + SfM-TTR (full model) 0.057 0.273 2.621 0.092
DIFFNet [172] + SfM-TTR (encoder) 0.056 0.273 2.600 0.093

Table 8.2: Encoder vs. full net-
work TTR. Note how the best re-

sults are achieved with encoder-

only TTR.

8.2.4 Ablation Studies

To validate the relative importance of the individual components of our SfM-TTR,

we perform ablation studies where we dispose some of our key components.

Table 8.2 shows a comparison between refining the complete network and

only updating the encoder. Similar to [212], we obtain better results when only

updating the encoder, further showing how light refinement schemes should

only focus on improving the underlying representation of the network.

As shown in Table 8.3, using the mean of per-image medians [168, 215] alignment

in our SfM-TTR, as well as other ablated versions of our method, worsens

significantly the performance on AdaBins. The alignment is specially important

for supervised models, as their scale is not corrected during the evaluation.

With our alignment, we are accounting for outliers with RANSAC and for the

heteroscedastic nature of the depth noise with weighted least squares, resulting

in substantially more robust and accurate results.
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Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
AdaBins [11] 0.072 0.325 3.134 0.112

AdaBins [11] + SfM-TTR (median) 0.074 0.263 2.509 0.103

AdaBins [11] + SfM-TTR (DNNs✓ , DSfM✓
) 0.065 0.278 2.787 0.103

AdaBins [11] + SfM-TTR (Least Squares) 0.064 0.222 2.346 0.097

AdaBins [11] + SfM-TTR (𝑤𝜽
𝑙 , 𝑗

= 1) 0.062 0.206 2.310 0.091
AdaBins [11] + SfM-TTR 0.060 0.204 2.260 0.091

Table 8.3: Alignment abla-
tion study. Note the substan-

tial improvement of our scal-

ing approach (detailed in Subsec-

tion 8.1.3) over other alignments.

Table 8.4: Quantitative results with new KITTI ground truth, Eigen split and no cropping. Best results per model in bold, best results

across all self-supervised models underlined. Experimental results are marked with ∗, results from original papers with ⋄. We compare

different architectures without TTR, with Ph-TTR and with our SfM-TTR. † Results from AdaBins differ from [11], as in this table we do not

crop during evaluation. For results using cropping, see Table 8.5.

TTR Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ 𝛿 < 1.25 ↑ 𝛿 < 1.25
2 ↑ 𝛿 < 1.25

3 ↑
✗ AdaBins [11] ∗† 0.072 0.325 3.134 0.112 0.941 0.990 0.998
✓ AdaBins [11] + SfM-TTR 0.060 0.204 2.260 0.091 0.970 0.993 0.998
✗ ManyDepth [155] ⋄ 0.064 0.345 3.116 0.103 0.949 0.989 0.997
✓ ManyDepth [155] + Ph-TTR ⋄ 0.056 0.322 3.034 0.096 0.961 0.992 0.997
✓ ManyDepth [155] + SfM-TTR 0.057 0.294 2.648 0.094 0.963 0.990 0.997
✗ CADepth [171] ∗ 0.078 0.403 3.432 0.119 0.933 0.988 0.997
✓ CADepth [171] + Ph-TTR ∗ 0.088 0.475 3.723 0.132 0.914 0.984 0.996

✓ CADepth [171] + SfM-TTR 0.068 0.328 2.821 0.106 0.955 0.990 0.996

✗ DIFFNet [172] ∗ 0.071 0.361 3.230 0.110 0.946 0.990 0.997

✓ DIFFNet [172] + Ph-TTR ∗ 0.057 0.285 2.900 0.095 0.961 0.992 0.998
✓ DIFFNet [172] + SfM-TTR 0.056 0.273 2.600 0.093 0.969 0.992 0.997

Table 8.5: Quantitative results with new KITTI ground truth, Eigen split and Eigen cropping. Best results per model in bold, best results

across all self-supervised models underlined. Experimental results are marked with ∗, results from papers with ⋄. † Results from AdaBins

+ SfM-TTR follow the common KITTI Benchmark cropping from the supervised depth learning literature [11], and the AdaBins results

without TTR are taken from the original paper.

TTR Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ 𝛿 < 1.25 ↑ 𝛿 < 1.25
2 ↑ 𝛿 < 1.25

3 ↑
✗ AdaBins [11] ⋄ † 0.058 0.190 2.360 0.088 0.964 0.995 0.999
✓ AdaBins [11] + SfM-TTR † 0.054 0.138 1.885 0.078 0.978 0.996 0.999
✗ ManyDepth [155] ∗ 0.059 0.297 2.960 0.097 0.954 0.991 0.998
✓ ManyDepth [155] + Ph-TTR ∗ 0.053 0.252 2.774 0.089 0.962 0.993 0.998
✓ ManyDepth [155] + SfM-TTR 0.054 0.252 2.510 0.089 0.966 0.992 0.998
✗ CADepth [171] ∗ 0.073 0.359 3.287 0.112 0.941 0.990 0.997
✓ CADepth [171] + Ph-TTR ∗ 0.082 0.426 3.565 0.124 0.923 0.986 0.997
✓ CADepth [171] + SfM-TTR 0.060 0.263 2.620 0.096 0.962 0.992 0.997
✗ DIFFNet [172] ∗ 0.066 0.318 3.078 0.103 0.953 0.992 0.998
✓ DIFFNet [172] + Ph-TTR ∗ 0.053 0.252 2.778 0.090 0.965 0.993 0.998
✓ DIFFNet [172] + SfM-TTR 0.052 0.229 2.444 0.085 0.973 0.994 0.998

Table 8.6: Quantitative results with Eigen (old) KITTI ground truth, Eigen split and Eigen cropping. Best results per model in bold, best

results across all self-supervised models underlined. Experimental results are marked with ∗, results from original papers with ⋄. Note

how, with this different ground truth, we again outperform the results of the baselines in Tables 8.4 and 8.5 and we further demonstrate

improvement over Monodepth2 [170] and the TTR approaches [214, 215] that were evaluated after such architecture in the original papers.

TTR Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ 𝛿 < 1.25 ↑ 𝛿 < 1.25
2 ↑ 𝛿 < 1.25

3 ↑
✗ AdaBins [11] ∗ 0.087 0.480 3.637 0.168 0.917 0.970 0.985
✓ AdaBins [11] + SfM-TTR 0.088 0.454 3.355 0.164 0.927 0.971 0.985
✗ Monodepth2 (384x112) [170] ⋄ 0.128 1.040 5.216 0.207 0.849 0.951 0.978
✓ Monodepth2 + TTR (from [215]) ⋄ 0.130 2.086 4.876 0.205 0.878 0.946 0.970

✗ Monodepth2 [170] ⋄ 0.115 0.903 4.863 0.193 0.877 0.9590 0.981

✓ Monodepth2 + TTR (from [214]) ⋄ 0.113 0.793 4.655 0.188 0.874 0.960 0.983
✓ Monodepth2 + SfM TTR 0.098 0.858 4.418 0.177 0.908 0.964 0.981

✗ ManyDepth [155] ⋄ 0.093 0.715 4.245 0.172 0.909 0.966 0.983
✓ ManyDepth [155] + Ph-TTR ⋄ 0.087 0.696 4.183 0.167 0.918 0.968 0.983
✓ ManyDepth [155] + SfM-TTR 0.090 0.718 4.040 0.168 0.917 0.967 0.983
✗ CADepth [171] ⋄ 0.102 0.734 4.407 0.178 0.898 0.966 0.984
✓ CADepth [171] + Ph-TTR ∗ 0.110 0.802 4.648 0.187 0.878 0.962 0.983

✓ CADepth [171] + SfM-TTR 0.095 0.703 4.073 0.173 0.912 0.966 0.982

✗ DIFFNet [172] ⋄ 0.097 0.722 4.345 0.174 0.907 0.967 0.984
✓ DIFFNet [172] + Ph-TTR ∗ 0.087 0.667 4.138 0.167 0.920 0.968 0.984
✓ DIFFNet [172] + SfM-TTR 0.087 0.660 3.948 0.165 0.925 0.969 0.984
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8.3 Limitations

As our current implementation of SfM-TTR depends on COLMAP’s output, it

is inherently offline and its performance is bounded to the quality of the SfM

results. Although we achieve good results in KITTI, a natural scenario and

standard benchmark, more challenging setups for SfM (for example, dynamic

objects, drastic appearance changes or low-parallax motion) are also problematic

for SfM-TTR. Works addressing such SfM challenges [232] will also be beneficial

for our method. Although we could easily replace COLMAP’s reconstruction by

that of an online real-time visual SLAM pipeline, e.g. [95], online and real-time

refinement of deep models is not straightforward. We find these aspects relevant

for our future work.

Although SfM-TTR excels at medium and large depths, we have noticed a

comparable or slightly worse performance than Ph-TTR at very close depths, for

which even the adjacent views used in Ph-TTR have sufficient parallax. Observe

the metrics in Figure 8.2 for depths under 10 meters. This observation suggests

a future line of research to combine the best from both Ph-TTR and SfM-TTR.

8.4 Conclusion

In this chapter we have presented SfM-TTR, an effective test-time refinement

for single-view depth networks that preserves the learned priors of supervised

and self-supervised models while also leveraging wide-baseline multi-view

constraints at inference. The key ingredient is formulating a TTR loss based

on sparse SfM depths, which have been estimated from wider baselines than

traditional photometric losses, that only consider adjacent frames. We propose

a novel RANSAC-based method for scale alignment between SfM and the depth

network that accounts for the depth outliers and its heteroscedastic noise. Very

importantly, we use a fixed set of hyperparameters for our SfM-TTR for all

experiments, without requiring per-architecture or per-sequence tuning.

Our experiments show that our SfM-TTR improves significantly the depth

predictions of different state-of-the-art networks, supervised and self-supervised.

We also outperform by a wide margin, in particular at medium and large depths,

the common TTR approach that we denote as Ph-TTR, based on the use of

photometric losses. These results validate our method as a general TTR approach

easy to implement and use after all kinds of networks, current and future ones.

Besides, as a more general comment, we believe that the presented contributions

provide insights towards a further leverage of SfM in self-supervised depth

learning, arising as a promising extension to the widely used photometry-based

losses.
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Figure 8.4: RMSE maps for different baselines architectures (rows) and TTR (columns). The input image is the center top image, as

AdaBins cannot be refined with photometric loss. The benefit of our SfM-TTR is particularly noticeable for large depths (framed by red

rectangles). Ph-TTR methods struggle in these areas as they use weak low-parallax constraints, while SfM leverages wider baselines and

produces more accurate depth supervision. Figure best viewed in color.

Input AdaBins + SfM-TTR ManyDepth + SfM-TTR CADepth + SfM-TTR DIFFNet + SfM-TTR

Figure 8.5: Qualitative depth maps for different architectures after SfM-TTR on KITTI.



Zero-Shot Multi-View Stereo 9
9.1 Method . . . . . . . . 47
9.2 Experiments . . . . . 52
9.3 Conclusions . . . . . 58

Chapter based on [18].

Sergio Izquierdo et al.

‘MVSAnywhere: Zero Shot Multi-

View Stereo’

Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition (CVPR), 2025

Code and models are avail-

able at https://github.com/

nianticlabs/mvsanywhere

Computing accurate depth from multiple views is a fundamental and
longstanding challenge in computer vision. However, most existing ap-
proaches do not generalize well across different domains and scene types
(e.g. indoor vs outdoor). Training a general-purpose multi-view stereo
model is challenging and raises several questions, e.g. how to best make use
of transformer-based architectures, how to incorporate additional metadata
when there is a variable number of input views, and how to estimate the
range of valid depths which can vary considerably across different scenes
and is typically not known a priori? To address these issues, we introduce
MVSA, a novel and versatile Multi-View Stereo architecture that aims to
work Anywhere by generalizing across diverse domains and depth ranges.
MVSA combines monocular and multi-view cues with an adaptive cost
volume to deal with scale-related issues. We demonstrate state-of-the-art
zero-shot depth estimation on the Robust Multi-View Depth Benchmark,
surpassing existing multi-view stereo and monocular baselines.

Estimating accurate depth from multiple RGB images is a core challenge in

3D vision, and a building block for downstream applications like 3D recon-

struction and autonomous driving. Recent approaches in learning-based MVS

are capable of generating accurate depths [123, 125, 233]. However, existing

methods typically struggle to generalize to scene and camera setups that differ

significantly from those in their training data. As a result, there is a pressing

need for general-purpose MVS methods that are more robust to differences

between the training and test distributions.

We take inspiration from the recent explosion in scene-agnostic single-view
depth models, which predict plausible metric [12, 151, 152, 154, 234, 235] or

up-to-scale [146–149] depth using only a single image as input. These models

are typically trained on large curated sets of synthetic and/or real RGB-D data,

endowing them with impressive generalization performance on previously

unseen data. Single-view models are, however, inherently limited by their input.

For our specific depth prediction target, constraining the model’s input to just

one image forces it to use single-view geometry cues (e.g. vanishing points) and

learned patterns [236], while losing the stronger multi-view signal. While there

are temporal extensions of these single view models [155, 237–240], their focus is

on temporal perceptual consistency, and not necessarily multi-view consistency.

In application contexts where multiple views are available at inference time, it

stands to reason that these lead to significantly more accurate depth estimates [15,

215, 241].

Developing a general-purpose MVS method, however, raises two significant

challenges. Firstly, it should be able to deal with arbitrary depth ranges. Existing

MVS methods typically require a known range of depths to ‘search’ over along

epipolar lines, corresponding to a discrete set of depth bins used to build a cost

volume. These depths are typically either fixed (and chosen from the range of

depths in the training data) [190] or are provided at test time for each image [123,

https://github.com/nianticlabs/mvsanywhere
https://github.com/nianticlabs/mvsanywhere
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233, 242]. Secondly, the many emerging benefits of ViTs [98] motivate us to find

a way to ‘upgrade’ parts of standard MVS architectures that are still CNNs.

To address these challenges, we introduce a new general-purpose MVS method

named Multi-View Stereo Anywhere (MVSA). Similarly to recent performant

monocular methods, it is trained on a large and diverse set of data, spanning

diverse depth ranges. Along with harmonizing these training signals, our main

technical contributions are:

MVSA (Ours)

MAST3R + triangulation

Depth Pro (mono)

MVSA (Ours)

Figure 9.1: Our MVSA model re-

sults in high-quality reconstruc-

tions from posed images, and is

superior to existing monocular

and MVS methods. Here we com-

pare with Depth Pro [153], a re-

cent monocular method which

produces sharp and good looking

depth maps, but can have incon-

sistent scaling of depths, which

are required for good meshes.

We also include a variant of

MAST3R [193] that we have aug-

mented with ground truth cam-

era poses. Our model gives sharp

depth maps which are also accu-

rate and 3D consistent, producing

high-quality meshes in zero-shot

environments.

▶ A novel transformer-based architecture that processes the multi-view

cost volume, while also incorporating monocular features. We propose a

Cost Volume Patchifier that tokenizes the cost volume without loosing its

details, while also incorporating features from a monocular ViT.

▶ We propose a view-count-agnostic and scale-agnostic mechanism to

construct the cost volume using geometric metadata given any number of

input source frames. This is in contrast to the established practice [190]

of concatenating geometric metadata from a fixed number of frames to

build the cost volume.

MVSA predicts highly accurate and 3D-consistent depths, obtaining state-of-the-

art results on the Robust Multi-View Depth Benchmark [243], which contains

a variety of challenging held-out datasets. We also report scores for some

new single- and multi-view methods for comparison. Our better depths result

in improved 3D mesh reconstruction compared to alternative depth-based

reconstruction methods (Figure 9.1).

9.1 Method: General-purpose Multi-View Stereo

Our model takes as input a𝐻 ×𝑊 reference image I𝑟 together with neighboring

source frames {I1 , . . . , I𝑁}, each with their relative poses and intrinsics. At

test time we aim to predict a dense depth map D𝑟 for I𝑟 . For ours to be a

general-purpose MVS method, we seek to:

1. Generalize to any domain. Most current MVS methods are typically

trained on and tested on data from similar domains, e.g. indoor only or

driving only.

2. Generalize to any range of depths. Predicted depth maps need to be

accurate for nearby surfaces (e.g. for robotics) or for more distant ones

(e.g. for drones and autonomous driving). In some scenarios like SfM,

the depths and camera poses are in a non-metric up-to-scale coordinate

system. Hence, general-purpose MVS should be robust to the scale of the

coordinate system.

3. Be robust to the number and selection of source frames. Traditional

MVS systems can struggle when there is little overlap between source

and reference frames. We also want MVS methods to be agnostic to the

number of source frames available at test time.

4. Predict 3D-consistent depths. Depths from one viewpoint should be

consistent with those predicted from different viewpoints. Fusion of

consistent depth maps will produce a mesh with accurate estimates of 3D

surfaces.

While prior works have tackled these problems in turn, we are the first model,

to the best of our knowledge, to tackle all four problems in a single system.
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Cost Volume 
Patchifier

Depth 
Decoder

Reference Image Encoder

Mono/Multi
Cue Combiner

Cost 
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I1éN
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Figure 9.2: Our general-purpose
multi-view depth estimation
model. We start with a cost-

volume based architecture, which

matches deep features between

views at different hypothesized

depths. Key for performance

are our Cost Volume Patchifier

and Mono/Multi Cue Combiner.

These also fuse single-view infor-

mation coming from the Refer-

ence Image Encoder and source

views.

9.1.1 MVSAnywhere

We introduce MVSAnywhere (MVSA), a novel general-purpose MVS system

which is designed to embody each of the previous properties. To help us learn

from diverse datasets and hence generalize to any domain, we use a large

transformer-based architecture, which takes as input: (1) multi-view information

from the reference and source images, and (2) single-view information, which

is extracted directly from the reference image via a monocular reference image
encoder. The overall architecture (Figure 9.2) is broadly inspired by recent MVS

approaches, e.g. [190]. It comprises five key components:

Feature extractor. This encodes the source and reference images into deep

feature maps F𝑟 and F𝑖∈{1...𝑁}, that will be processed via a cost volume. We

use the first two blocks of a ResNet18 [244] for this encoder, producing feature

maps at resolution 𝐻/4 ×𝑊/4.

Cost volume. Following e.g. [124, 178, 180, 185], we warp feature maps F𝑖 from

each source view to the reference one using a set of hypothesized depth

values (i. e. bins) B. We then concatenate these warped features and F𝑟 with

appropriate metadata, following [190]. See Subsection 9.1.2 for our specific

novel contributions in this matter.

Reference image encoder. This extracts powerful deep monocular features for

I𝑟 . We use the ViT Base [98] encoder from Depth Anything V2 [148], with their

pretrained weights for relative monocular depth estimation, which help us to

be robust to limited overlaps between source and reference frames. As ViT

Base operates on 14 × 14 patches, the reference image is resized to
14𝐻
16
× 14𝑊

16

resolution before feeding to ViT Base, such that the extracted features are size

𝐻
16
× 𝑊

16
.

Mono/Multi Cue Combiner. This converts the “patchified” features of the cost

volume and reference image into a sequence of features which go to our depth

decoder. Monocular and multi-view cues are combined by a novel component

described in Subsection 9.1.3.

Depth Decoder. Based on the decoder from [245], MVSA progressively up-

samples and processes features from the Mono/Multi Cue Combiner module

to produce the final depth map at the reference image resolution.

9.1.2 Metadata Agnostic to View Count and Scale

SimpleRecon [190] demonstrated that readily available metadata, e.g. geometric

and camera pose information, can be incorporated into the cost volume to

improve depths. For each pixel location (𝑢𝑟 , 𝑣𝑟) in I𝑟 and depth bin 𝑘 in B, we

backproject the pixel to a 3D point 𝑃 and then reproject it into every source

view I𝑖 .
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Figure 9.3: Our metadata cost volume is agnostic to view count and scale. To be agnostic to view count our MLP produces a weight (𝑤𝑖 )
and a score (𝑠𝑖 ) per position that are aggregated into a single value. To be scale agnostic we normalize the metadata that is unit dependent,

i. e. the depths and the pose distances.

We enable this formulation to work with arbitrary scales by normalizing the

metadata that depends on the scale. The specific metadata for the bin with

coordinates (𝑢𝑟 , 𝑣𝑟 , 𝑘) in the cost volume includes:

Feature dot product: The dot product of the reference image features and each

warped source image features, expressed for each source image 𝑖 as

F𝑟 · ⟨F⟩𝑖 , where ⟨⟩ is the warping operation which warps features from

the source image to the reference viewpoint at the depth corresponding

to bin 𝑘. This value is often used as the sole matching affinity in cost

volumes.

Visual features: We also include the features from reference F𝑟 and for each

warped source image 𝑖, ⟨F⟩𝑖 . This supplements the dot product by also

incorporating the visual features that might help to discern the reliability

of the matching at that point.

Ray directions r𝑘,𝑢𝑟 ,𝑣𝑟𝑟 and r𝑘,𝑢𝑟 ,𝑣𝑟
𝑖

∈ ℝ3: This is the normalized directions point-

ing from the camera origins to the 3D location of a point (𝑘, 𝑢𝑟 , 𝑣𝑟) in

the plane sweep cost volume. We create rays for the reference and all the

source images.

Reference plane depth 𝑧𝑘,𝑢𝑟 ,𝑣𝑟𝑟 : This is the depth of the point at position (𝑘, 𝑢𝑟 , 𝑣𝑟)
in the cost volume, measured perpendicularly from the reference camera.

We normalize these values with the minimum and maximum depth of

the scene ((𝑧𝑟 − 𝑑𝑚𝑖𝑛)/𝑑𝑚𝑎𝑥).
Reprojected depths 𝑧𝑘,𝑢𝑟 ,𝑣𝑟

𝑖
: This is the perpendicular depth of the 3D point

at position (𝑘, 𝑢𝑟 , 𝑣𝑟) in the cost volume, relative to the source camera 𝑛.

As with 𝑧𝑟 , we normalize these values with the minimum and maximum

depth of the scene ((𝑧𝑖 − 𝑑𝑚𝑖𝑛)/𝑑𝑚𝑎𝑥).
Relative ray angles 𝜃𝑟,𝑖 : This is the angle between the ray directions r𝑘,𝑢𝑟 ,𝑣𝑟𝑟

and r𝑘,𝑢𝑖 ,𝑣𝑖
𝑖

.

Relative pose distance 𝑝𝑟,𝑖 : This is the relative pose distance between the ref-

erence camera and a source frame, as defined in [189]:

𝑝𝑟,𝑖 =

√
∥t𝑟,𝑖∥ +

2

3

tr(𝕀 − R𝑟,𝑖), (9.1)

where t𝑟,𝑖 and R𝑟,𝑖 are the relative translation and rotation between views

𝑖 and 𝑟. The translation, t𝑟,𝑖 , is normalized by the source frame with the

biggest pose distance.

Depth validity masks 𝑚𝑘,𝑢𝑟 ,𝑣𝑟
𝑖

: This is a binary mask indicating whether the

point (𝑘, 𝑢𝑟 , 𝑣𝑟) in the cost volume projects in front of the source camera 𝑖
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a) Naive cost volume patchification

b) Our cost volume patchifier module

Cost volume features (|    |xH/4xW/4)

Cost volume features (|    |xH/4xW/4)

ConvTrans

ConvTrans

Mono/Multi
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Mono/Multi
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Figure 9.4: Our cost volume
patchifier enables high-quality in-

formation to be extracted from a

|D| × 𝐻
4
× 𝑊

4
cost volume, ready

for input to the Mono/Multi Cue

Combiner ViT. (a) Shows the

naive approach to patchification.

(b) Our approach makes better

use of the reference image fea-

tures.

or not.

SimpleRecon [190]’s cost volume concatenates metadata from all eight source

frames and runs an MLP to produce one single cost (matching score) per spatial

location and depth hypothesis. While this gives good scores, its limitation is that

it requires exactly eight source frames for every training and test reference image,

limiting the model’s flexibility (note though that traditional MVS methods are

typically already view-count agnostic). To address this limitation, we introduce

a view-count-agnostic metadata component which enables a single model to

generalize to any number of source views. For each source frame, we run an

MLP that ingests the metadata from the reference frame and the source frame

and predicts two values: a score and a weight. This results in 𝑁 scores and 𝑁

weights. A weighted sum of the 𝑁 scores is computed after the 𝑁 weights go

through softmax. This weighted sum is used as the value in the cost volume at

every pixel location (𝑢, 𝑣) and depth hypothesis 𝑘. Our novel module enables

aggregation of the matching score and confidence for each source frame, while

allowing for a variable number of source frames for each I𝑟 .

The source camera poses may be close to the reference, or far from it. To be

more invariant to this possible range of scales, we also make the metadata scene
scale-agnostic. To this end, we normalize the relative pose measures of the

metadata using a maximum across all the source frames for a given reference

frame. We also normalize the depth hypothesis metadata using the maximum

and minimum of B.

As the scene scale information is not provided to the rest of our network, we

rescale the depth predictions to match the scale of the input poses. Our depths

are predicted with a sigmoid function 𝜎 over the logit 𝑥. To align the prediction

of the network with the cost volume, the sigmoid output is scaled by the depth

range of the cost volume, so

D𝑟 = exp

(
log(𝑑min) + log(𝑑max/𝑑min) · 𝜎(𝑥)

)
. (9.2)

9.1.3 Mono/Multi Cue Combiner

Given the cost volume of shape |B| × 𝐻
4
× 𝑊

4
, and the reference image encoder

features of shape 𝐶 × 𝐻
16
× 𝑊

16
(outputs of different blocks of the reference image
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Figure 9.5: MVS datasets cover
a wide range of depth values.
Here we show the distribution

of % depths in the DTU [246],

ScanNet [247], ETH3D [248],

Tanks and Temples [249], and

KITTI [119] datasets, as a stacked

bar chart. Note the log x-axis.

This wide range of depth values

can be challenging when it comes

to constructing meaningful cost

volumes and predicting the final

depths.

encoder), we pose the question: how can we best combine these features to

provide the strongest signal for the decoder? Motivated by the recent success of

transformer architectures in single-view depth prediction [148, 153, 245], we

use a ViT-Base network to process these features in a Mono/Multi Cue Combiner
network, which produces a sequence of tokens for the decoder to transform into

a depth prediction.

To effectively achieve this we need to i) convert the cost volume into a token

sequence without sacrificing information and ii) incorporate the monocular

cues to help in decoding sharp depth. For i), a naive approach would be to apply

a strided convolution projecting to the ViT token dimensions, resembling how

RGB images are patchified. However this is suboptimal, for it lacks contextual

information on how to achieve this downsampling. Instead, we propose a

cost volume patchifier module. This guides the downsampling process with

information from the first two blocks of the reference image encoder. We convert

the cost volume into tokens using two strided convolutions, but first, concatenate

each of them with the monocular features of the first two blocks, transposed

and projected at 1/4 and 1/8 of the input resolution, respectively. The output of

this module is a sequence of
𝐻
16
× 𝑊

16
tokens, matching the sequence length of

the monocular features. These tokens are then fed into a ViT-B initialized with

DINOv2 weights (see Fig. 9.4).

For ii) we add the tokens from the cost volume with the ones from the reference

image encoder after projecting the latter with a linear layer. We repeat this

process at blocks 2, 5, 9, and 11 of the ViT to incorporate multiple levels of

monocular cues. This simple mechanism allows the network to refine and

regularize the cost volume with the help of the reference image structure.

9.1.4 Generalizing to Any Range of Depths

When building a cost volume, a set of depth hypotheses (i. e. bins) Bare used to

warp feature maps F𝑖 to I𝑟 . This raises the question: How do we choose B to

generalize to any range of depths? Depth ranges vary hugely across datasets

(see Figure 9.5), so using the same fixed range is suboptimal.

We address this with a cascaded cost volume approach, first introduced in 3D

stereo matching [181, 204, 205]. While these works start from a known ‘ground

truth’ depth range, we use the known intrinsics and extrinsics to infer the

minimum and maximum depths that could be matched between I𝑟 and each I𝑖 .
We space our initial depth bins logarithmically within this range, then make

an initial depth prediction. The min and max values of this initial estimate are

then used to rebuild the cost volume for a final depth prediction. This iterative

process occurs only at test time; during training, we use the known depth range.
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Name Scenes #total # total # training Metric Moving
scenes images tuples poses? objects?

Hypersim [250] Indoor 461 77K 45K Yes No

TartanAIR [251] Indoor, Outdoor 30 1M 92K Yes Yes

BlendedMVG [252] Indoor, Outdoor, Aerial 389 110K 97K No No

MatrixCity [253] Outdoor, Aerial 1 519K 40K Yes No

VKITTI2 [254, 255] Outdoor 5 21K 40K Yes Yes

Dynamic Replica [256] Indoor 484 145K 70K Yes Yes

MVSSynth [124] Outdoor 117 12K 3K No Yes

SAIL-VOS 3D [257, 258] Indoor, Outdoor 6807 237K 21K Yes Yes

Table 9.1: We train on eight

MVS datasets from a variety

of domains. All these datasets

are synthetically rendered, giving

them perfect ground truth depths

and camera calibration. However,

BlendedMVG uses real textures

on their assets.

Importantly, previous methods that are provided with an exact depth range

learn to predict depths that cover all the depth hypotheses. Thus, when using a

rough estimate of the range, these methods fail to align the prediction to the

actual valid depths. To further mitigate this issue, we augment the ground truth

ranges via a random perturbation during training.

9.1.5 Implementation Details

Losses. We use the supervised losses from [190]. These comprise an L1 loss

between the log of the ground truth and the log of the predicted depth values,

and a gradient and normals loss. Training losses are applied to four output

scales of the decoder. At inference, only the final largest-scale prediction is

used. We take as input 640 × 480 images, and output depth maps at the same

resolution. We use 64 depth bins in B sampled in log space.

Keyframes. For datasets with dense sequences, we choose reference and source

frames with the strategy of [189, 190]. To be robust to sparser sets of frames, we

also select tuples based on geometry overlap, obtaining tuples of not necessarily

consecutive frames.

Training data. For MVSA to generalize across domains, we train on a large and

diverse set of synthetic datasets, as listed in Table 9.1. A subset of these training

datasets contain moving objects. Our reference image encoder is initialized

from Depth Anything V2 (DAV2) [148], which uses a teacher network trained on

synthetic datasets similar to ours, and a student network distilled using various

real images that do not overlap with our evaluation benchmarks. DAV2 was

initialized from a pretrained DINOv2 [54] network, in turn trained on internet

images.

9.2 Experiments

We evaluate MVSA on both depth estimation and 3D reconstruction tasks. We

also implement and report scores for a set of new baselines, which have never

before been evaluated on the benchmarks we use.

9.2.1 Baselines

Where possible, we obtain results directly from prior works [192, 243]. We

also evaluate and implement other strong baselines that did not previously

report performance on diverse MVS benchmarks. These include: (i) A strong

monocular baseline in the form of DAV2 [148]. To account for the unknown

affine transform, we align its predictions to the ground truth using least squares.



9 Zero-Shot Multi-View Stereo 53

(ii) MAST3R [193] (raw depth estimate) which involves passing the reference and

one other source image as input and taking the 𝑧 component of the point cloud

as the depth prediction. (iii) MAST3R (plus our triangulation) which is a novel

extension of MAST3R so that it can use provided extrinsics and intrinsics, when

available. For each of the available source images, we use MAST3R descriptors

to match points with the reference image. We then triangulate points from such

matches, rescale the raw depth predictions, and aggregate the point clouds from

the different views using a sum weighted by the predicted confidences. Note,

this method requires one forward pass and thousands of triangulations per

source view, significantly reducing its speed. MAST3R trains on ScanNet [247]

and MegaDepth [226] (which contains a subset of the Tanks and Temples

dataset [249]).

Benchmark. We evaluate ‘zero-shot’ depth estimation performance on the five

multi-view datasets from the Robust Multi-View Depth Benchmark (RMVDB) [243],

which are not included in our training data. It contains the KITTI [119] Scan-

Net [247], ETH3D [248], DTU [246], and Tanks and Temples [249] datasets and

represents a diverse set of evaluation scenarios, e.g. driving sequences, room

scans, building scans, and tabletop objects, among others. We use the evaluation

procedure and source view selection procedure from [243], allowing direct

comparison to previous approaches.

Methods are grouped into four different types (a-d) depending on the infor-

mation they are provided, e.g. if they are given GT cameras, GT depth ranges,

etc.. MVSA naturally fits into type (d), where all methods are given GT poses,

so need to predict depth directly in metric scale and hence do not need any

alignment or knowledge of the GT depth range. Note, some methods train on

the training splits of one, or more, of the benchmark datasets, thus achieving

very high scores in those cases. We denote these in Table 9.2 with a parenthesis

around them.

Metrics. We report two commonly used metrics to compare the predicted D
and GT depth DGT

. The absolute relative depth (rel) is computed per-pixel as

|D−DGT|/DGT
, while the inlier percentage 𝜏, with threshold 1.03, is computed

per-pixel as [max(D/DGT ,DGT/D) < 1.03], where [] is the Iverson bracket. Both

metrics are averaged over all valid GT pixels in each test image, before averaging

over all images.

Results. Table 9.2 depicts the quantitative results, where we outputperform all

baselines across most metrics. Qualitative results in Figure 9.8 demonstrate that

our MVSA model produces depth maps with superior edge detail and consistent

scaling across a variety of scenes, visually outperforming prior methods. MVSA

also performs well on moving objects, e.g. as found in KITTI; see also Fig. 9.7.

Both MAST3R triangulated and the Robust MVD Baseline exhibit poor edge

quality, limiting their suitability for applications such as single-image novel

view synthesis [259], which requires sharp depth boundaries. While Depth Pro

produces sharp edges, it frequently displays incorrect depth scaling. In contrast,

our MVSA model combines competitive quantitative performance with sharper

edges, making it ideal for tasks that demand both visual and depth accuracy.

Finally, GT depth-based median and least squares scaling of monocular methods

and depth from frames methods (w/o poses) is crucial for good scores, while

MVSA consistently predicts high-quality and metric depths.

Alternative Variant of RMVDB. We further evaluate some of the leading

models on a RMVDB variant, in which we change some conditions to better

reflect real-world scenarios. In this variant, for ScanNet we use keyframes using
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I𝑟 (RGB) MVSA (Ours) MVSFormer++
Figure 9.6: Many MVS models
fail in areas of poor frame over-
lap. Here we show how MVS-

Former++ (right) fails to recover

geometry in areas of the image

where there are no matching pix-

els between source and target

views (see the top left corner). Our

model (middle) handles this situ-

ation gracefully.

the strategy of [189], rather than the temporally sequential keyframes provided

by the benchmark. For ETH3D we undistort both the images and the ground

truth using their provided Thin-Prism [260] camera parameters. Results are

shown in Table 9.3. On this revised benchmark, we more comprehensively

outperform the baselines.

9.2.2 Ablations Study

In Table 9.5 we validate our design decisions by turning on and off sections

of our system. We train all ablations at a smaller resolution (512 × 384 input),

and without using metadata, for efficiency. At this resolution, Row A is ‘ours’

and all other rows are ablations relative to this. Row B replaces our standard

ViT-B with the smaller ViT Small, both for the cost volume ViT and the reference

image encoder. The reference image encoder is initialized from Depth Anything

v2 (small). Row C uses our training data and pipeline, but with the fully-

convolutional architecture from SimpleRecon [190] (without metadata). Row D
is our system but without adding noise to the ground truth range at training

time (Section 9.1.4). Although this method can excel when the initial range is

accurate, it can fail to generalize (see DTU). Row E is our full architecture but

without the pretrained encoder weights from [148]. Instead we initialize with

DINOv2 weights. Row F is our system without a cascaded cost volume, and

instead uses a fixed set of depth bins, losing the ability to refine depth bins and

work with arbitrary scales or scene sizes. Row H is our full model, but where

we take the first depth prediction from the model as our final output, without

re-building the cost volume. Even though these bins capture the full range of

depths in the test datasets (Figure 9.5), we see that performance degrades. Row

G uses CNN layers instead of ViT to combine mono/multi features. Row I uses

naive patchification to preprocess the cost volume for input to the mono/multi

cue combiner ViT, as outlined in Figure 9.4.

Robustness to pose rescaling.

In Table 9.4 we evaluate the robustness to pose scale in ScanNet by rescaling

poses and depths (which are in metric scale) by a factor of 100. This simulates the

type of ‘non-metric scene scale’ we might see if, for example, we reconstructed

a scene using SfM package such as COLMAP which does not provide metric

scaled reconstructions. Our depths are robust to this scaling (vs ours w/o

normalization of the metadata, which performs badly.

9.2.3 Meshing and 3D Reconstruction

To judge the 3D-consistency of our predictions we evaluate our model on

ScanNet Mesh Evaluation benchmark using the protocol defined in [265] which

also uses source frame selection from [189]. The benchmark uses a GT mesh
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Table 9.2: We set a new SOTA in depth estimation on the RMVDB. See Section 9.2 for details of the metrics, baselines and groupings.

Monocular methods with † are given ground truth intrinsics. The best result for each section appears in bold, and (parentheses) indicate

results where the evaluation dataset is in the training set.

Approach GT GT Align KITTI ScanNet ETH3D DTU T&T Average
Poses Range rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ time [s] ↓

Classical SfM approaches
Colmap [175, 261] ✓ ✗ ✗ 12.0 58.2 14.6 34.2 16.4 55.1 0.7 96.5 2.7 95.0 9.3 67.8 ≈ 180

Colmap Dense [175, 261] ✓ ✗ ✗ 26.9 52.7 38.0 22.5 89.8 23.2 20.8 69.3 25.7 76.4 40.2 48.8 ≈ 180

a) Depth from frames (w/o poses)
DeMoN [262] ✗ ✗ ∥t∥ 15.5 15.2 12.0 21.0 17.4 15.4 21.8 16.6 13.0 23.2 16.0 18.3 0.08
DeepV2D KITTI [177] ✗ ✗ med (3.1) (74.9) 23.7 11.1 27.1 10.1 24.8 8.1 34.1 9.1 22.6 22.7 2.07

DeepV2D ScanNet [177] ✗ ✗ med 10.0 36.2 (4.4) (54.8) 11.8 29.3 7.7 33.0 8.9 46.4 8.6 39.9 3.57

MAST3R [193] (raw output) ✗ ✗ med 3.3 67.7 (4.3) (64.0) 2.7 79.0 3.5 66.7 (2.4) (81.6) 3.3 71.8 0.07

MAST3R [193] (raw output) ✗ ✗ ✗ 61.4 0.4 (12.8) (19.4) 43.8 3.1 145.8 0.5 (66.9) (0.0) 66.1 4.7 0.07

b) Depth from frames and poses (with per-image range provided)
MVSNet [123] ✓ ✓ ✗ 22.7 36.1 24.6 20.4 35.4 31.4 (1.8) (86.0) 8.3 73.0 18.6 49.4 0.07
MVSNet Inv. Depth [123] ✓ ✓ ✗ 18.6 30.7 22.7 20.9 21.6 35.6 (1.8) (86.7) 6.5 74.6 14.2 49.7 0.32

CVP-MVSNet [263] ✓ ✓ ✗ 156.7 2.2 137.1 15.9 156.4 13.6 (4.0) (68.4) 24.7 52.9 95.8 30.6 0.49

Vis-MVSNet [186] ✓ ✓ ✗ 9.5 55.4 8.9 33.5 10.8 43.3 (1.8) (87.4) 4.1 87.2 7.0 61.4 0.70

PatchmatchNet [242] ✓ ✓ ✗ 10.8 45.8 8.5 35.3 19.1 34.8 (2.1) (82.8) 4.8 82.9 9.1 56.3 0.28

Fast-MVSNet [191] ✓ ✓ ✗ 14.4 37.1 17.0 24.6 25.2 32.0 (2.5) (81.8) 8.3 68.6 13.5 48.8 0.30

MVS2D ScanNet [233] ✓ ✓ ✗ 21.2 8.7 (27.2) (5.3) 27.4 4.8 17.2 9.8 29.2 4.4 24.4 6.6 0.04
MVS2D DTU [233] ✓ ✓ ✗ 226.6 0.7 32.3 11.1 99.0 11.6 (3.6) (64.2) 25.8 28.0 77.5 23.1 0.05

MVSFormer++ DTU [185] ✓ ✓ ✗ 26.3 42.8 16.7 28.0 30.3 40.1 (0.8) (95.7) 7.2 82.3 16.3 57.8 0.78

MVSFormer++ DTU+BlendedMVG [185] ✓ ✓ ✗ 4.4 65.7 7.9 39.4 7.8 50.4 (0.9) (95.3) 3.2 88.1 4.8 67.8 0.78

c) Single-view depth
Depth Pro [153] † ✗ ✗ med 6.1 39.6 (4.3) (58.4) 6.1 53.5 5.6 49.6 5.6 57.5 5.6 51.7 5.16

Depth Pro [153] † ✗ ✗ ✗ 13.6 14.3 9.2 19.7 28.5 8.7 161.8 3.5 38.3 4.4 50.3 10.1 5.16

Metric3D [12] † ✗ ✗ med 5.1 44.1 2.4 78.3 4.4 54.5 10.1 39.5 6.2 48.0 5.6 52.9 0.46

Metric3D [12] † ✗ ✗ ✗ 8.7 13.2 6.2 19.3 12.7 13.0 890.5 1.4 16.7 13.7 187.0 12.1 0.46

UniDepthV2 [235] † ✗ ✗ med 4.0 55.3 (2.1) (82.6) 3.7 66.2 3.2 72.3 3.6 68.4 3.3 68.9 0.29

UniDepthV2 [235] † ✗ ✗ ✗ 13.7 4.8 (3.2) (61.3) 15.4 11.9 964.8 1.3 16.7 12.7 202.7 18.4 0.29

UniDepthV1 [235] † ✗ ✗ med 4.4 51.6 (1.9) (84.3) 5.4 48.4 9.3 31.8 9.6 38.7 6.1 51.0 0.21

UniDepthV1 [235] † ✗ ✗ ✗ 5.2 39.5 (2.7) (69.4) 48.2 1.8 583.3 1.0 30.7 4.2 134.0 23.2 0.20

DepthAnything V2 (ViT-B) [148] ✗ ✗ lstsq † 6.6 38.6 4.0 58.6 4.7 56.5 2.6 74.7 4.5 57.5 4.8 54.1 0.05
d) Depth from frames and poses (w/o per-image range)
DeMoN [262] ✓ ✗ ✗ 16.7 13.4 75.0 0.0 19.0 16.2 23.7 11.5 17.6 18.3 30.4 11.9 0.08

DeepTAM [264] ✓ ✗ ✗ 68.7 0.4 (6.7) (39.7) 20.4 19.8 58.0 9.1 40.0 12.9 38.8 16.4 0.85

DeepV2D KITTI [177] ✓ ✗ ✗ (20.4) (16.3) 25.8 8.1 30.1 9.4 24.6 8.2 38.5 9.6 27.9 10.3 1.43

DeepV2D ScanNet [177] ✓ ✗ ✗ 61.9 5.2 (3.8) (60.2) 18.7 28.7 9.2 27.4 33.5 38.0 25.4 31.9 2.15

MVSNet [123] ✓ ✗ ✗ 14.0 35.8 1568.0 5.7 507.7 8.3 (4429.1) (0.1) 118.2 50.7 1327.4 20.1 0.15

MVSNet Inv. Depth [123] ✓ ✗ ✗ 29.6 8.1 65.2 28.5 60.3 5.8 (28.7) (48.9) 51.4 14.6 47.0 21.2 0.28

CVP-MVSNet [263] ✓ ✗ ✗ 158.2 1.2 2289.0 0.1 1735.3 1.2 (8314.0) (0.0) 415.9 9.5 2582.5 2.4 0.50

Vis-MVSNet [186] ✓ ✗ ✗ 10.3 54.4 84.9 15.6 51.5 17.4 (374.2) (1.7) 21.1 65.6 108.4 31.0 0.82

PatchmatchNet [242] ✓ ✗ ✗ 29.0 16.3 70.1 16.7 99.4 3.5 (82.6) (5.6) 39.4 19.3 64.1 12.3 0.18

Fast-MVSNet [191] ✓ ✗ ✗ 12.1 37.4 287.1 9.4 131.2 9.6 (540.4) (1.9) 33.9 47.2 200.9 21.1 0.35

MVS2D ScanNet [233] ✓ ✗ ✗ 73.4 0.0 (4.5) (54.1) 30.7 14.4 5.0 57.9 56.4 11.1 34.0 27.5 0.05
MVS2D DTU [233] ✓ ✗ ✗ 93.3 0.0 51.5 1.6 78.0 0.0 (1.6) (92.3) 87.5 0.0 62.4 18.8 0.06

Robust MVD Baseline [243] ✓ ✗ ✗ 7.1 41.9 7.4 38.4 9.0 42.6 2.7 82.0 5.0 75.1 6.3 56.0 0.06

MAST3R (plus our triangulation) ✓ ✗ ✗ 3.4 66.6 (4.5) (63.0) 3.1 72.9 3.4 67.3 (2.4) (83.3) 3.4 70.1 0.72

MVSA ✓ ✗ ✗ 3.2 68.8 3.7 62.9 3.2 68.0 1.3 95.0 2.1 90.5 2.7 77.0 0.12
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Approach ScanNet ETH3D
rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑

Robust MVD Baseline [243] 6.02 47.83 5.75 71.64

MAST3R Triangulated (3.88) (68.68) 2.37 84.90

MVSA (Ours) 3.22 69.45 1.27 93.24

Table 9.3: Our variant of
RMVDB. We use better test-

time tuples for ScanNet, and for

ETH3D we use the undistorted

test images.

Approach ScanNet ScanNet ×100

rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑
Ours (low res) 4.22 61.80 4.22 61.83

Ours w/o norm. metadata w/o view count agnostic 3.97 61.23 4.34 57.59

Table 9.4: Results on an arbitrary
scale. We scale the ScanNet poses

by a factor of 100 to evaluate ro-

bustness to arbitrary scales.

Input
(Anonymized)

Ours MVSFormer++
(As published)

MVSFormer++
(Trained on our data)

Figure 9.7: We handle dy-
namic objects significantly better

than traditional MVS e. g. MVS-

Former++.
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Figure 9.8: Qualitative comparison of depth prediction results across multiple datasets (KITTI, ScanNet, ETH3D, DTU, and Tanks &

Temples). Rows show different methods: Depth Pro [243], rMVD baseline [243], MAST3R (Triangulated) [193], and our MVSA model, along

with RGB inputs (I𝑟 ) and ground-truth depths (GT). Depth Pro provides sharp edges but often misestimates depth scale, while our MVSA

model captures finer details than MAST3R and rMVD. Depth maps are normalized to ground truth depth range for consistent visualization.
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KITTI ScanNet ETH3D DTU T&T Average
rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑ rel ↓ 𝜏 ↑

A Ours (no metadata, low res.) 3.39 66.88 3.86 60.82 3.11 70.17 2.43 92.05 2.23 88.38 3.00 75.66
B w/ ViT Small 3.57 64.34 4.40 56.57 3.63 64.61 2.69 91.52 2.71 84.51 3.40 72.31

C w/ [190]’s architecture 3.63 65.94 5.03 51.76 3.74 63.09 1.77 90.97 2.78 87.90 3.39 71.93

D w/o noise on GT range 3.33 66.83 5.14 52.77 3.53 66.32 13.45 89.21 2.34 87.64 5.32 74.89

E w/o DAV2 weights 3.45 65.42 4.58 57.14 3.48 65.59 2.14 92.48 2.56 86.01 3.24 73.33

F w/ fixed bins [0-100m] 3.41 64.33 3.80 61.62 3.15 67.20 4.11 65.64 2.36 85.72 3.37 68.90

G no MMCC ViT 3.54 65.32 4.39 56.94 3.56 65.27 3.07 90.49 2.46 87.54 3.41 73.11

H w/o bin refinement 3.57 63.39 5.18 51.05 3.50 67.93 6.80 82.12 2.27 87.04 4.26 70.31

I Naive patchify 3.66 62.61 4.27 58.86 3.18 67.27 1.95 91.69 2.46 86.52 3.11 73.39

Table 9.5: Ablation Study. Here

we validate our design decisions

on RMVDB [243] by ablating

various components. See Subsec-

tion 9.2.2 for details. First and

second best scores are indicated.

Comp↓ Acc↓ Chamfer↓ Prec↑ Recall ↑ F-Score ↑
DeepVideoMVS [189] S 10.68 6.90 8.79 0.541 0.592 0.563

ATLAS [266] S 7.16 7.61 7.38 0.675 0.605 0.636

NeuralRecon [267] S 5.09 9.13 7.11 0.630 0.612 0.619

3DVNet [268] S 7.72 6.73 7.22 0.655 0.596 0.621

TransformerFusion [265] S 5.52 8.27 6.89 0.728 0.600 0.655

VoRTX [269] S 4.31 7.23 5.77 0.767 0.651 0.703
SimpleRecon [190] S 5.53 6.09 5.81 0.686 0.658 0.671

COLMAP [175] 10.22 11.88 11.05 0.509 0.474 0.489

MAST3R [193] (raw depth) S+ 12.35 12.69 12.52 0.265 0.283 0.272

MAST3R [193] (+ triangulation) S+ 5.38 6.78 6.08 0.572 0.655 0.608

SimpleRecon [190] (trained on our data) 8.07 6.67 7.37 0.501 0.597 0.544

MVSA (Ours) 4.93 6.39 5.66 0.616 0.696 0.652

Table 9.6: ScanNet Mesh Eval-
uation [265]. Scores adapted

from [190, 265]. Rows marked

with S were trained on Scan-

Net only, while those marked

S+ were trained on ScanNet and

other datasets. Our MVSA model,

which was not trained on Scan-

Net, outperforms many models

which were, e. g. [266–268].

collected with an active RGBD sensor captured in a video. The evaluation

computes point-to-point vertex error from GT to predicted (as accuracy), from

predicted to GT (as completion), and the average of the two (as chamfer).

Additionally, 200k points are sampled uniformly over each mesh and point-to-

point errors thresholded at 5cm distance are used to compute precision, recall

and F-score. Almost all competing methods are trained on ScanNet, however our

method that was not trained on ScanNet performs comparatively, outperforming

many of the methods in Table 9.6.

9.2.4 Gaussian Splat Regularization using MVSAnywhere

We show a use case of our method as a regularizer for Gaussian Splats. We

follow a similar approach as VCR-GauS [270] and DN-Splatter [271] regularizing

depth and normals during training as additional losses. In Figure 9.9, we show

qualitative results of the meshes obtained after using raw Splatfacto without

regularization, and with normal and depth supervision from Metric3D [12] and

from MVSA. Note that we used an scale-invariant loss for Metric3D given that

the used scenes lay in arbitrary scales. More details on this regularization are

available on the code.

Limitations. While we use multi-view information to generate depths, we do

not enforce or encourage temporal consistency. Techniques for this [198, 215,

240] could work with MVSA. Also, like traditional MVS, our method requires

known camera intrinsics and poses; recent works suggest this requirement

could be relaxed [272, 273].
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Input scene No regularization
Metric3D

Depth + Normal
MVSA (Ours)

Depth + Normal

Figure 9.9: Qualitative compar-
ison of Gaussian Splat meshes
using Metric3D and MVSA as
regularizers.

9.3 Conclusions

We introduced MVSAnywhere, a new general-purpose MVS depth estimation

approach. We addressed challenges associated with training on diverse MVS

datasets, such as how to best leverage ViT-based architectures, how to incorpo-

rate geometric metadata, and how to handle variable depth ranges. Through

extensive experimentation, we compare to numerous existing and new baselines.

Our contributions result in state-of-the-art zero-shot performance on a range of

challenging reconstruction and depth estimation test datasets, in some cases

even outperforming models trained on the test domains.
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This thesis has explored two fundamental tasks of spatial perception within

the broader field of Spatial AI: Visual Place Recognition and multi-view depth

estimation.

In the first part of the thesis, we addressed VPR. In Chapter 4 we described

how to leverage a large feature extractor effectively and introduced our novel

module SALAD. Although previous attempts have been made to use large

vision models as backbones in VPR, we demonstrate how fine-tuning DINOv2

improves over the out-of-the-box version and produces state-of-the-art results.

Besides, we presented SALAD, a novel aggregation module that can assign

features to clusters more effectively than NetVLAD, outperforming previous

methods even with smaller descriptors.

In Chapter 5, we analyzed how previous VPR methods, including SALAD,

struggle to correlate descriptor and geographic distance, especially around the

decision threshold. In light of this, we identify and describe the Geographic

Distance Sensitivity of recent models—the ability to assign smaller descriptor

distances to pairs of images that are geographically closer. To overcome this, we

proposed a novel mining strategy, CliqueMining, which samples batches with

challenging hard negative examples. Training with this novel strategy results

in a boost in the GDS and improved metrics in densely sampled and visually

aliased environments like Nordland or MSLS Challenge.

This first part of the thesis has significantly advanced the state of the art in VPR.

With DINOv2 SALAD, deep models are easier and faster to train resulting in

higher recalls and improved robustness. Combining this with CliqueMining

further improves the metrics on dense and unsaturated datasets.

Despite these advancements, we have observed that current models struggle

to correctly rank images just based on descriptor distances. In future work,

we aim to explicitly train to retrieve the correct order of the retrieved images.

Using contrastive losses reduces VPR to a binary problem, where samples are

either positive (same place) or negative (different place). Instead, we suggest

incorporating the geographic distance into the loss, to enforce smaller descriptor

distances to pairs of images that are indeed closer geographically.

The second part of this thesis focused on leveraging multiple views of a scene

for depth estimation. In Chapter 8, we propose an effective approach to enrich

single-view depth methods with image sequence information. We developed a

test-time refinement of the networks supervising them with the sparse signal of

a COLMAP reconstruction. Although this setup poses some challenges, like

outliers in the sparse reconstruction or different scales between the network and

COLMAP, we propose a RANSAC alignment that correctly retrieves the scale

and removes possible outliers. As a result, the refined methods can leverage the

wide baseline information from COLMAP and produce much more accurate

guesses at large depths, clearly outperforming the commonly used photometric

refinement.

Lastly, in Chapter 9, we developed a general-purpose multi-view depth system,

that we named MVSAnywhere. This model takes inspiration from single-view

depth approaches and addresses the challenges that limit the widespread of

multi-view systems. It is trained on multiple synthetic datasets to have strong
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generalization, leverages the ViT architecture for single and multi-view, has

strong monocular features to handle dynamic or low overlapping scenes, does

not require depth range as input, and uses cost-volume metadata but works

with different scales. Extensive evaluation shows how MVSAnywhere results

in state-of-the-art zero-shot performance on varied and challenging testing

datasets.

These two works demonstrate how multi-view information can be leveraged

for depth estimation resulting in better accuracies than single-view models.

Although this is unsurprising and multi-view depth has been long studied,

most of the approaches focused on small datasets or the same train and test

distribution, and the community lacked more general systems. In this thesis,

we show both the importance and accuracy of multi-view and take some of the

first steps towards general-purpose multi-view depth models.

The next steps in this line of research may focus on how to aggregate multi-view

information without any knowledge or heuristic about the scene depth range,

thus avoiding the two-step refinement. To achieve this, the cost volume may be

built by sampling along epipolar lines and concatenating these values with the

depth at those points. This will allow for a more effective use of the correlation,

as only valid and feasible pixels will be sampled. Another line of research

could explore how to leverage powerful matching features in the cost volume,

such as those of MAST3R. As these features are trained to be matched, they

could be an excellent candidate to build the cost volume, especially texture-less

areas, aliased patterns, or strong illumination changes, where current feature

extractors tend to fail.



Conclusión

En esta tesis se han explorado dos tareas fundamentales de la percepción

espacial dentro del campo más amplio de la inteligencia artificial espacial:

el Reconocimiento Visual de Lugares o VPR y la estimación de profundidad

multivista.

En la primera parte de la tesis, abordamos el reconocimiento visual de lugares.

En el Capítulo 4 describimos cómo aprovechar eficazmente un extractor de

características de gran capacidad e introdujimos el nuevo módulo SALAD.

Aunque ha habido intentos previos de utilizar modelos visuales grandes como

extractor de características en VPR, nosotros hemos demostrado cómo seguir

entrenando DINOv2 para la tarea de VPR mejora sustancialmente los resultados

respecto a la versión original. Además, presentamos SALAD, un novedoso

módulo de agregación capaz de asignar características a clústeres de forma

más efectiva que NetVLAD, superando a métodos anteriores incluso utilizando

descriptores más pequeños.

En el Capítulo 5 analizamos cómo los métodos previos de VPR, incluido SALAD,

presentan dificultades para correlar la distancia en el espacio de descriptores con

la distancia geográfica, especialmente cerca del umbral de decisión. A raíz de

este análisis, identificamos y describimos la sensibilidad a la distancia geográfica

(GDS, por sus siglas en inglés) de los modelos actuales: la capacidad de asignar

distancias menores a los pares de imágenes más cercanas geográficamente. Para

solventar este problema, propusimos una nueva estrategia de muestreo de datos,

CliqueMining, que selecciona conjuntos de imágenes con ejemplos negativos

difíciles para la red. Entrenar con esta nueva estrategia proporciona una mejora

en la GDS y aumenta las métricas en entornos densos, como Nordland o MSLS

Challenge.

Esta primera parte de la tesis ha traído una mejora significativa del estado

del arte en VPR. Con DINOv2 SALAD, los modelos profundos se entrenan

de manera más sencilla y rápida, obteniendo mejores métricas y una mayor

robustez. Combinando esto con CliqueMining se logran aún mejores resultados

en conjuntos de datos densos.

A pesar de estos avances, hemos observado que los modelos actuales todavía

presentan dificultades para ordenar correctamente las imágenes únicamente

en base a las distancias de sus descriptores. Para trabajos futuros, proponemos

entrenar explícitamente para recuperar el orden correcto en la lista de imágenes

recuperadas. El uso de funciones de coste basadas en contraste reduce el

problema de VPR a una clasificación binaria (mismo o distinto lugar), pero

consideramos que incorporar la distancia geográfica en la función de coste

permitiría forzar distancias menores en el espacio de descriptores a aquellas

imágenes que estén realmente más próximas geográficamente.

La segunda parte de esta tesis se ha centrado en aprovechar múltiples vistas de

una escena para la estimación de profundidad. En el Capítulo 8, proponemos un

nuevo método para incorporar información multivista en sistemas de estimación

de profundidad monoculares. Desarrollamos un refinamiento en tiempo de

inferencia que utiliza como objetivo la señal dispersa de una reconstrucción

COLMAP. Aunque esta configuración presenta desafíos, como la presencia de

errores en la reconstrucción o las diferencias de escala entre la red y COLMAP,

propusimos una alineación mediante RANSAC que recupera correctamente
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la escala y elimina posibles errores. Como resultado, los métodos, una vez

refinados, pueden aprovechar la información multivista proporcionada por

COLMAP y producir predicciones mucho más precisas a grandes distancias,

superando claramente al refinamiento fotométrico habitual.

Por último, en el Capítulo 9, desarrollamos un sistema de estimación de pro-

fundidad multivista de propósito general al que denominamos MVSAnywhere.

Este modelo se inspira en sistemas monoculares y aborda los principales de-

safíos que limitaban la popularización de los métodos multivista. El sistema

está entrenado con datos sintéticos variados para lograr generalizar a nuevas

escenas, aprovecha arquitecturas ViT tanto para la información monocular

como la multivista, presenta características monoculares robustas que permiten

manejar escenas con baja superposición o elementos dinámicos, no requiere

conocer de antemano el rango de profundidades, e incorpora metadatos en el

volumen de costes manteniendo compatibilidad con distintas escalas. Hemos

evaluado el sistema de forma exhaustiva, demostrando que MVSAnywhere

alcanza los mejores resultados en distintas evaluaciones.

Estos dos trabajos demuestran cómo la información multivista puede aprovecharse

para obtener estimaciones de profundidad más precisas que los modelos monoc-

ulares. Aunque esto no es nada nuevo y la estimación multivista ha sido

estudiada durante décadas, la mayoría de métodos anteriores se limitaban a

conjuntos de datos pequeños o a distribuciones de entrenamiento y evaluación

similares. En esta tesis mostramos tanto la importancia como el potencial de

los métodos multivista, dando algunos de los primeros pasos hacia modelos

multivista de propósito general.

Las siguientes líneas de investigación pueden centrarse en cómo agregar infor-

mación multivista sin necesidad de conocimiento previo o heurísticas sobre el

rango de profundidad de la escena, evitando así el proceso de refinamiento en

dos pasos. Para lograrlo, el volumen de costes podría construirse muestreando

directamente a lo largo de las líneas epipolares y concatenando estos valores

con la profundidad en esos puntos. Esto permitiría un uso más eficiente de la

correlación, ya que sólo se muestrearían píxeles válidos. Otra línea futura sería

investigar cómo aprovechar descriptores potentes entrenados específicamente

para tareas de matching, como los de MAST3R. Dado que estas características

están entrenadas para ser emparejadas, podrían ser una excelente opción para

construir el volumen de costes, especialmente en regiones con baja textura,

patrones repetidos o cambios de iluminación, donde los extractores actuales

tienden a fallar.
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