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No por mucho madrugar amanece més temprano.

No matter how early you get up, sunrise won't be any sooner.

— Spanish proverb



Abstract

Determining the location of an agent and representing its surroundings are two essential capabilities for the
successful deployment of intelligent systems with spatial awareness. Commonly referred to as localization
and reconstruction or mapping, these tasks have been studied for decades in the computer vision community,
as many applications—such as augmented reality and robotics—rely heavily on them to operate coherently
within the physical world.

One of the first steps in localizing an agent is retrieving its coarse location, for which Visual Place Recognition
(VPR) provides an effective solution when a database of georeferenced images is available. A key challenge in
VPR lies in designing compact, informative, and discriminative descriptors that remain robust under strong
viewpoint changes, structural variations, and lighting conditions. In this context, the first part of this thesis
proposes two complementary directions to advance VPR. First, we introduce a novel feature aggregation
method based on optimal transport, paired with a powerful vision transformer backbone, to produce more
robust image descriptors. Second, we propose a new training strategy that enhances the geographic sensitivity
of these descriptors by selecting hard training samples based on both visual similarity and spatial distance.
Together, these contributions advance towards effective, large-scale, and general VPR pipelines, significantly
improving metrics at popular benchmarks, like MSLS Challenge, where we improved recall@1 from 67.4% to
82.7% and Nordland, from 58.4% to 90.7%.

Within the broader task of scene reconstruction or mapping, monocular depth estimation is one of the
core pieces. While it is well understood how multiple views naturally provide geometric cues to resolve
ambiguities and improve accuracy, the enduring question is how to design methods that can robustly
exploit this information across diverse scenarios in a general-purpose manner. The second part of this
thesis proposes two novel methods for leveraging multi-view constraints for depth estimation. First, we
introduce a test-time refinement method that uses sparse 3D points from Structure-from-Motion to guide
single-view depth networks during inference. This preserves the learned priors of single-view depth networks
while injecting additional multi-view constraints. Second, we propose a general-purpose multi-view stereo
architecture designed to operate robustly across diverse environments and depth scales. Our contributions
focus on versatility, training on multiple datasets, addressing low overlap and dynamic objects, and removing
restrictions like a priori depth range knowledge. Together, these contributions demonstrate the potential
of combining learned priors with geometric constraints, showing promising steps towards a seamless
integration of multi-view information in depth estimation. More precisely, our proposed refinement improved
all considered single-view depth models, and our general-purpose multi-view stereo system obtained
state-of-the-art results on the Robust Multi-View Depth Benchmark.



Resumen

Determinar la ubicacién de un agente y saber representar su entorno son dos capacidades esenciales para
el correcto funcionamiento de sistemas inteligentes con conocimiento espacial. Estas tareas, conocidas
cominmente como localizacién y reconstruccién o mapeado, han sido estudiadas durante décadas en la
comunidad de visién por computador, ya que muchas aplicaciones, como la realidad aumentada o la robética,
dependen en gran medida de ellas para interactuar de forma coherente en el mundo fisico.

Uno de los primeros pasos en la localizacién de un agente es obtener una estimacién aproximada de su
ubicacién, para lo cual el Reconocimiento Visual de Lugares, conocido como VPR por sus siglas en inglés,
ofrece una solucién eficaz cuando se dispone de una base de datos de imagenes georreferenciadas. Uno
de los principales desafios en VPR consiste en disefiar descriptores que sean compactos, informativos
y discriminativos, pero que ademds se mantengan robustos ante fuertes cambios de punto de vista,
variaciones estructurales o de iluminacién. En este contexto, la primera parte de esta tesis propone dos
direcciones complementarias para avanzar en VPR. En primer lugar, presentamos un método de agregacion
de caracteristicas basado en la teorfa de transporte 6ptimo. Ademads proponemos utilizar una potente
arquitectura como red neuronal para obtener descriptores de imagen mas robustos. En segundo lugar,
proponemos una nueva estrategia de entrenamiento que mejora la sensibilidad geografica de los descriptores
seleccionando ejemplos dificiles basdndonos tanto en similitud visual como en distancia espacial. Estas
contribuciones suponen un avance hacia sistemas de VPR efectivos, escalables y versatiles, mejorando
significativamente los resultados en benchmarks populares como MSLS Challenge o Nordland.

Dentro del campo de la reconstruccién o mapeado de escenas, la estimacién de profundidad a partir de una
sola imagen se suele considerar una de las tareas clave. Si bien es conocido que el uso de miltiples vistas
aporta informacién geométrica que permite resolver ambigiiedades y mejorar la precision, el problema a
resolver es cémo disefiar métodos capaces de aprovechar esta informacién de forma robusta en escenarios
diversos y de propésito general. La segunda parte de esta tesis propone dos métodos para aprovechar las
informacién multivista en la estimacion de profundidad. Primero, presentamos un método de refinamiento
en tiempo de inferencia que utiliza nubes de puntos 3D no densas obtenidas mediante Structure-from-Motion
para guiar a las redes de profundidad monocular durante su ejecucién, preservando asi los conocimientos
de la red mientras se incorporan restricciones geométricas adicionales. En segundo lugar, proponemos una
arquitectura multivista de propdsito general disefiada para operar de forma robusta en entornos variados y
con rangos de profundidad diversos. Nuestras contribuciones se centran en la versatilidad: entrenando con
multiples conjuntos de datos, afrontando escenas con poco solapamiento y objetos dindmicos, y eliminando
restricciones como el conocimiento previo del rango de profundidades. Conjuntamente, estas contribuciones
muestran el potencial de combinar lo aprendido por las redes con restricciones geométricas, dando pasos
hacia una integracién fluida de la informacién multivista en la estimacién de profundidad. Concretamente,
el refinamiento que hemos propuesto ha mejorado todos los métodos de profundidad que probamos y el
sistema de profundidad multivista que hemos desarrollado obtiene los mejores resultados actuales en el
Robust Multi-View Depth Benchmark.
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Outline of the Thesis

Lo bueno, si breve, dos veces bueno.
Brevity is the soul of wit.

-Spanish proverb

Intelligent behavior in the physical world requires, in general, an understanding
of tridimensional space and motion. Whether it is a robot navigating an unfa-
miliar building, a drone mapping terrain, or a smartphone overlaying digital
content in Augmented Reality (AR), all these systems must have the ability to
localize themselves, estimate a consistent representation of their surroundings,
and interpret and interact with their environment in a spatially coherent manner.
The field that aims to endow machines with these abilities is known as Spatial
Artificial Intelligence (Spatial Al)—the study and development of systems that
can perceive, model, and operate effectively within physical environments [1].

At the core of Spatial Al lies spatial perception—the process by which an agent
interprets raw sensory data (images in this thesis) to infer spatial structure
and egomotion. This includes a wide range of individual tasks, from low-level
operations like image or feature matching [2-4] to mid-level tasks such as visual
localization [5, 6], camera pose estimation [7-9] and depth prediction [10-12],
and up to high-level processing pipelines like Simultaneous Localization And
Mapping (SLAM) [13, 14].

Broadly speaking, these tasks aim to answer two central questions: Where am
I? and What surrounds me? This thesis investigates key research challenges
associated with both, and it is structured into two parts aligned with these two
questions.

Part I of this thesis is focused on the where, and more precisely on Visual Place
Recognition (VPR)—the task of retrieving a coarse location by matching a query
image against a set of references. The usual approach to this task is to use
a backbone model that extracts visual features, followed by an aggregation
module that generates compact descriptors from these features. These models
are typically trained end-to-end using metric learning losses.

Most of the research in VPR has focused on designing deep architectures or
training pipelines to improve their accuracy and robustness. In Chapter 4, we
introduce architectural contributions that leverage a large pre-trained vision
model as the feature extractor, combined with a novel aggregation module to
create highly discriminative global descriptors. This results in a powerful and
easy-to-train model that achieves state-of-the-art results in common benchmarks.
In Chapter 5, we shift focus to the training process, proposing a new hard-
negative mining strategy that curates batches by sampling cliques of very
similar-looking images. This significantly improves the recall in very aliased or
densely sampled datasets.

Part II of this thesis addresses the what, specifically exploring multi-view depth
estimation—the process of inferring the scene geometry leveraging information
from multiple views. While a significant portion of recent research has focused
on single-view depth, leading to large, powerful, and robust models, all of
these are fundamentally limited by the ill-posed nature of the single-view

1.1 List of Contributions

1.2 Funding
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1 Outline of the Thesis

setup. Incorporating additional views offers a principled way to overcome their
limitations and enhance robustness.

In this thesis, we propose two different manners of leveraging multi-view
cues for monocular depth. First, in Chapter 8, we enhance single-view depth
models with a Test-Time Refinement (TTR) strategy that uses sparse depth from
a Structure-from-Motion (SfM) reconstruction as supervision. This improves
the reconstruction’s accuracy, especially at large depths, where our method
leverages potentially large baselines from SfM. Then, in Chapter 9, we present a
large general-purpose multi-view depth network trained on diverse datasets.
Our model overcomes the limitations of previous multi-view stereo approaches
regarding varying scales, unknown depth ranges, dynamic environments, and
generalization to unseen environments.

1.1 List of Contributions

The contributions to this thesis, listed in what follows, stem from research pub-
lications, industry collaboration, open source development and peer reviewing
of academic manuscripts.

Publications

» Sergio Izquierdo and Javier Civera
‘SFM-TTR: Using Structure from Motion for Test-Time Refinement of
Single-View Depth Networks’
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2023

» Sergio Izquierdo and Javier Civera
‘Optimal Transport Aggregation for Visual Place Recognition’
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2024

» Sergio Izquierdo and Javier Civera
‘Close, But Not There: Boosting Geographic Distance Sensitivity in Visual
Place Recognition’
Proceedings of the European Conference on Computer Vision (ECCV), 2024

» Sergio Izquierdo et al.
‘MVSAnywhere: Zero Shot Multi-View Stereo’
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2025

» Blanca Lasheras-Hernandez et al.
‘Single-Shot Metric Depth from Focused Plenoptic Cameras’
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2025

Industry Collaboration

» June 2023 - September 2023: Autonomy Intern at Skydio, San Mateo (US).
Supervised by Kalpana Seshadrinathan.

» July 2024 - December 2024: Research Intern at Niantic Labs, London (UK).
Supervised by Gabriel Brostow.
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1 Outline of the Thesis

Open Source Development

>

>

SfM-TTR.

Code for [15] is available at:
https://github.com/serizba/SfM-TTR.

Licensed under the GNU General Public License v3.0.
DINOv2 SALAD.

Code and models for [16] are available at:
https://github.com/serizba/salad.

Licensed under the GNU General Public License v3.0.
CliqueMining.

Code and models for [17] are available at:
https://github.com/serizba/cliquemining.
Licensed under the GNU General Public License v3.0.
MVSAnywhere.

Code and models for [18] are available at:
https://github.com/nianticlabs/mvsanywhere.
Licensed allowing for non-commercial use only.

Peer Reviewing

vVvyVvYyVvyVvyYYyyewy

1.2

IROS (2022, 2024)

ICCV (2023)

RA-L (2024, 2025, 2025)

TPAMI (2024, 2025)

ECCV (2024)

CVPR (2025) (Outstanding reviewer)
NeurIPS (2025)

Funding

This thesis has been funded by the Spanish Government with the pre-doctoral
grant FPU20/02342. It has also been supported with projects from the Spanish
Government (PID2021-127685NB-100 and TED2021-131150B-100) and the Aragén
Government (DGA T45 23R, DGA FSE-T45 20R).
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Motivation and Contributions

De noche todos los gatos son pardos.
All cats are dark at night.

-Spanish proverb

The ability to identify a place based on visual information is a fundamental
human skill and a crucial component of our spatial awareness. This capability
allows us to revisit familiar places, identify landmarks, and navigate through
known environments effortlessly.

The fascination with this cognitive function expanded beyond its biological
roots, inspiring popular games like GeoGuessr [20] and WhereTaken [21]. In
these games, players are challenged to determine locations based on visual
cues, showcasing the remarkable aptitude of humans to match patterns and
recognize places!.

Unsurprisingly, beyond humans requiring these skills for perception and
engaging in them for fun, these abilities are also a fundamental building block
for Spatial Al They are crucial for SLAM [13, 14], AR [22], and absolute visual
localization [23]. In SLAM, they enable loop closing so agents can identify
previously visited locations and correct accumulated errors [24, 25]. In AR, they
help recognize landmarks that applications may use to enhance the experience.
They are also the first step in absolute visual localization, obtaining a first coarse
location that is then refined with precise feature matching.

This part of the thesis focuses on the task of Visual Place Recognition, a subfield
of visual perception concerned with determining the location of a query image
by matching it to a database of geo-tagged reference images [26]. The term VPR
is widely used in the research community to refer to this specific problem.

VPR is typically formulated as an image retrieval problem, where visual
features of the images are extracted and aggregated to generate compact
but descriptive representations. These representations are then compared to
identify the most visually similar matches. For the retrieval to be effective, the
representations must be both robust and discriminative, effectively handling
challenges such as illumination changes, varying weather conditions, and
structural transformations.

Recent advancements in VPR have primarily focused on two broad areas: namely
the neural architectures and training process. Architectural improvements
involve designing or adopting novel backbone models [27, 28], which are
responsible for extracting meaningful and dense visual features from the input
images. The aggregation module, which combines deep features into a compact
and descriptive representation, has also been the subject of significant research [5,
29, 30]. Regarding the training pipeline, recent research encompasses strategies
and techniques to optimize the model’s performance, such as the losses [31-33],
mining procedures [34], or datasets [6, 33] used during training.

In this thesis, we present architectural contributions, including using a pre-
trained large vision model as the backbone model and a novel aggregation
module, which are detailed in Chapter 4. Additionally, a novel mining strategy
for the training pipeline is presented in Chapter 5. These contributions effectively

1: Popular  youtuber  from
the GeoGuessr community
recognises  places  within
0.1 seconds on Geoguessr
https:/ /www.youtube.com/
watch?v=ff6E4mrUkBY
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advance the robustness and generality of VPR methods, obtaining unprece-
dented results in well-established and challenging benchmarks. Specifically, we
improve Recall@1 in the MSLS Challenge from 67.4% to 82.7% and in Nordland
from 58.4% to 90.7%.



Related Work

The significant research efforts on VPR have been exhaustively compiled in a
number of surveys and tutorials over the years [26, 35-38]. Current research
addresses a wide variety of topics, such as novel loss functions [6, 32], image
sequences [39-41], extreme viewpoint changes [42] or text features [43]. In this
section, we focus on work related to the architecture, i.e. feature extraction and
aggregation, as well as to the training pipeline, as there lie our contributions
presented in Chapters 4 and 5.

3.1 Architectures

Early approaches to VPR used either aggregations of handcrafted local fea-
tures [44—46] or global descriptors [47, 48]. In both cases, geometric [49] and
temporal [49, 50] consistency was sometimes enforced for enhanced perfor-
mance. With the emergence of deep neural networks, features pre-trained for
recognition tasks, without fine-tuning, showed a significant performance boost
over handcrafted ones [27]. However, training or fine-tuning specifically for VPR
tasks using contrastive or triplet losses [31] offers an additional improvement
and is standard nowadays.

Most of the backbones to extract image features used to be based on the ResNet
architecture [5, 30, 51]. More recent works in VPR have shifted towards Vision
Transformer (ViT) backbones [52, 53], obtaining significant improvements over
previous models. This shift opened the door to use large pretrained foundation
models like DINOv2 [54]. Although AnyLoc [28] first proposed to use DINOv2
in VPR, they use the model frozen, while in our research we show how finetuning
this model can further improve performance.

NetVLAD [5] is one of the most popular architecture explicitly designed for
VPR, mimicking the classical Vector of Locally Aggregated Descriptors (VLAD)
aggregation [45] but jointly learning from data both convolutional features and
cluster centroids. Later, Radenovi¢ et al. [30] proposed the Generalized Mean
Pooling (GeM) to aggregate feature activations, also a popular baseline due to
its simplicity and competitive performance. In addition to these, several other
alternatives have been proposed in the literature. For example, Teichmann et al.
[55] aggregates regions instead of local features. Recently, MixVPR [29] has
presented the best results in the literature by aggregating deep features with a
Multi-Layer Perceptron (MLP) layer.

A notable trend in VPR has been the adoption of a two-stage approach to
enhance retrieval accuracy [51, 53, 56-59]. After a first stage with any of the
methods presented in the previous paragraph, the top retrieved candidates are
re-ranked attending to the un-aggregated local features, either assessing the
geometric consistency to the query image or predicting their similarity. This
re-ranking stage adds a considerable overhead, which is why it is only applied
to a few candidates, but generally improves the performance. Re-ranking is
out of the scope of our research but, notably, we outperform all baselines that
employ re-ranking even if our model does not include such stage (and hence it
is substantially faster).



In Chapter 4, we propose a novel aggregation module that uses optimal transport
to assign features to clusters. Optimal transport has found a significant number
of applications in graphics and computer vision [60]. Specifically, related to
our research, it has been used for image retrieval [61], image matching [62] and
feature matching [3, 4]. Recently, Zhang et al. [63] used optimal transport at
the re-ranking stage in a retrieval pipeline. However, ours is the first work that
proposes the formulation of local feature aggregation from an optimal transport
perspective.

3.2 Training Pipelines

Overall, training details matter in image retrieval and are task-specific. Typically,
contrastive [64] and triplet [65] losses are used to train a deep model that
maps images into an embedding space, in which similar samples are close
together and dissimilar ones are far apart. Although other losses have been
proposed in the literature, e. g. [34, 66-72], Musgrave et al. [31] and Roth et al. [73]
showed a higher saturation than the one reported in the previous literature.
The particularities of VPR, however, can be leveraged in task-specific losses. For
example, Leyva-Vallina et al. [32] grade similarity based on spatial overlap to
make losses more informative. Ali-bey et al. [33] showed that the multi-similarity
loss [74] can be effectively used for VPR tasks. They curated a dataset, GSV-
Cities, and organized it on sparse places that, combined with the multi-similarity
loss led to significant performance gains. As other recent works [29, 75], our
contributions builds on top of the multi-similarity loss on GSV-Cities. However,
the sparse nature of the GSV-Cities dataset [33] limits the effectiveness of the
models in densely sampled data, present in many benchmarks [39, 76]. We
argue that densely sampled data is relevant in VPR as it is a prevalent condition
in numerous applications, owing to the proliferation of mobile computational
platforms capturing video (such as cars, drones, glasses and phones) and the
availability of tools to crowdsource and store big data.

Mining informative batches matters as much or even more than the chosen
losses [34]. “Easy” samples contribute with small loss values, which may slow
down or plateau the training [31]. On the other hand, using only “hard” samples
produces noisy gradients and may overfit or converge to local minima [34, 77],
which suggests a sweet spot in mixed strategies [78]. As another taxonomy,
mining can be done offline after a certain number of iterations [79-81], with high
computational costs, or online within each batch [82, 83]. In practice, “hard”
negatives samples are typically used, as they are easy to mine and informative [5,
39, 84, 85]. “Hard” positive mining [86-89] is more challenging to implement, as
it is sometimes caused by occlusions, large scale changes or low overlap, which
may be misleading and harm generalization [30]. Wang ef al. [74] generalizes
sampling schemes by weighting pairs in the multi-similarity loss according to
their embedding distance.

3 Related Work
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Optimal Transport Aggregation

The task of Visual Place Recognition aims to match a query image against
references from an extensive database of images from different places, relying
solely on visual cues. State-of-the-art pipelines focus on the aggregation of
features extracted from a deep backbone, in order to form a global descriptor
for each image. In this context, we introduce SALAD (Sinkhorn Algorithm
for Locally Aggregated Descriptors), which reformulates NetVLAD's soft-
assignment of local features to clusters as an optimal transport problem. In
SALAD, we consider both feature-to-cluster and cluster-to-feature relations
and we also introduce a ‘dustbin’ cluster, designed to selectively discard
features deemed non-informative, enhancing the overall descriptor quality.
Additionally, we leverage and fine-tune DINOwv2 as a backbone, which
provides enhanced description power for the local features, and dramatically
reduces the required training time. As a result, our single-stage method
not only surpasses single-stage baselines in public VPR datasets, but
also surpasses two-stage methods that add a re-ranking strategy with
significantly higher cost.

Recognizing a place solely from images becomes a challenging task when scenes
undergo substantial changes in their structure or appearance. Such capability
is referred to in the scientific and technical literature as VPR, and is essential
for agents to navigate and understand their surroundings autonomously in a
wide array of applications, such as robotics [90-94] or AR [37]. Specifically, it is
present in SLAM [13, 95] and absolute pose estimation [96, 97] pipelines.

In practice, VPR is framed as an image retrieval problem, wherein typically
a query image serves as the input and the goal is to obtain an ordered list of
top-k matches against a pre-existing database of geo-localized reference images.
Images are represented as an aggregation of appearance pattern descriptors,
which are subsequently compared via nearest neighbour. The effectiveness of
this matching relies on generating discriminative per-image descriptors that
exhibit robust performance even for challenging variations such as fluctuating
illumination, structural transformations, temporal changes, weather and sea-
sonal shifts. Most recent research on VPR have thus focused on the two key
components of this general pipeline, namely the deep neural backbones for
feature extraction and methods for aggregating such features.

For years, ResNet-based neural networks have been the predominant backbones
for feature extraction [5, 30, 51]. Recently, given the success of ViT for different
computer vision tasks [98-101], some methods have introduced ViT in the field
of VPR [52, 53]. AnyLoc [28] proposed to leverage foundation models, using
DINOV2 [54] as a feature extractor for VPR. However, AnyLoc uses DINOv2 ‘as
is’, while we show in this chapter that fine-tuning the model for VPR brings a
significant increase in performance.

Regarding aggregation, NetVLAD [5], the learned counterpart to the traditional
handcrafted VLAD [45], is among the most popular choices. Alternative methods
include pooling layers like GeM [30] or learned global aggregation, like the

4.1 Method ........ 10
4.2 Experiments . .. .. 13
4.3 Conclusions and

Limitations . . . . .. 18
Chapter based on [16]:

Sergio Izquierdo and Javier
Civera

‘Optimal Transport Aggregation
for Visual Place Recognition’
Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition (CVPR), 2024

The code and models are avail-
able at https://github.com/
serizba/salad
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recent MixVPR [29]. In this chapter, we propose optimal transport aggregation,
setting a new state of the art in VPR.

As a summary, in this work, we present a single-stage approach to VPR that
obtains state-of-the-art results in the most common benchmarks. To achieve
this, we present two key contributions:

» First, we propose SALAD (Sinkhorn Algorithm for Locally Aggregated
Descriptors), a reformulation of the feature-to-cluster assignment problem
through the lens of optimal transport, allowing more effective distribution
of local features into the global descriptor bins. To further improve the
discriminative power of the aggregated descriptor, we let the network
discard uninformative features by introducing a ‘dustbin” mechanism.

» Secondly, we integrate the representational power of foundation models
into VPR, using DINOv?2 as the backbone for feature extraction. Unlike
previous approaches that utilized DINOv2 in its pre-trained form, our
method involves fine-tuning the model specifically for the task. This
fine-tuning process converges extremely fast, in just four epochs, and
allows DINOV2 to capture more relevant and distinctive features pertinent
to place recognition tasks.

The fusion of these two novel components results in DINOv2 SALAD, which
can be efficiently trained in less than one hour and sets unprecedented recall
in VPR benchmarks, with 75.0% Recall@1 in MSLS Challenge and 76.0% in
Nordland. All of this with a single-stage pipeline, without requiring expensive
post-processing steps and with an inference speed of less than 3 ms per image.

4.1 Method: SALAD

DINOv2 SALAD is based on NetVLAD, but we propose to use and fine-tune
the DINOv2 backbone (Subsection 4.1.1) and propose a novel module (SALAD)
for the assignment (Subsection 4.1.2) and aggregation (Subsection 4.1.3) of
features.

4.1.1 Local Feature Extraction

Effective local feature extraction lies in striking a balance: features must be robust
enough to withstand substantial changes in appearance, such as those between
seasons or from day to night, yet they should retain sufficient information on
local structure to enable accurate matching.

Inspired by the success of ViT architectures in many computer vision tasks and
by AnyLoc [28], that leverages the exceptional representational capabilities of
foundation models [102], we adopt DINOv2 [54] as our backbone. However,
differently from AnyLoc, we use a supervised pipeline and include the backbone
in the end-to-end training for the specific task, yielding improved performance.

DINOv2 adopts a ViT architecture that initially divides an input image I €
R/>X@X¢ into p X p x ¢ patches, with p = 14. These patches are sequentially pro-
jected with transformer blocks, resulting in the output tokens {ti, ..., t,, t,11}, ti €
R¥, where n = hw/p? is the number of input patches and there is an additional
global token t;;4; that aggregates class information. Although the DINOv2's
authors reported that fine-tuning the model only brings dim improvements, we

Baseline

ResNet

NetVLAD

SOFTMAX

DINOv2 ViT

Optimal
Transport

Figure 4.1: Illustration of a VPR
baseline (left) and our contri-
bution (right). The left column
outlines a typical VPR baseline,
a ResNet backbone followed by
NetVLAD aggregation [5]. On the
right column, we replace ResNet
with a partially fine-tuned DI-
NOv2 [54] backbone, and incor-
porate SALAD, our novel optimal
transport aggregation using the
Sinkhorn Algorithm. Our model
achieves unprecedented state-of-
the-art results on common VPR
benchmarks.
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found that at least for VPR there are substantial gains in selectively unfreezing
and training the last blocks of the encoder.

4.1.2 Assignment

In NetVLAD, a global descriptor is formed by assigning a set of features to
a set of clusters, {Cy,...,C jreees Cm}, and then aggregating all features that
belong to each cluster. For the assignment, NetVLAD computes a score matrix
S € RZ§", where the element in its i" row and jth column, si,j € Rso, represents
the cost of assigning a feature to a cluster C;. In other words, S quantifies the
affinity of each feature to each cluster. While SALAD draws inspiration from
NetVLAD, we identify several crucial aspects in their assignment and propose
alternatives to address these.

Reduce assignment priors. When building the score matrix S, NetVLAD
introduces certain priors. Specifically, it initializes the linear layer that computes
S with centroids derived from k-means. While this may accelerate the training,
it introduces inductive bias and potentially makes the model more susceptible
to local minima. In contrast, we propose to learn each row s; of the score matrix
from scratch with two fully connected layers initialized randomly:

S; = Wsz(o(wsl (t;) + bsl)) + bs, 4.1)

where W;,, W;, and by, , b, are the weights and biases of the layers, and ¢ is a
non-linear activation function.

Discard uninformative features. Some features, such as those representing the
sky, might contain negligible information for VPR. NetVLAD does not account
for this, and the contribution of all features is preserved in the final descriptor.
Contrary, we follow recent works on keypoint matching and introduce a ‘dustbin’
where non-informative features are assigned to. For that, we augment the score
matrix, from Sto S =[S, §; 1] € R%m”, by appending the column §; ;41
representing the feature-to-dustbin relation. As in SuperGlue [4], this score is
modeled with a single learnable parameter z € R:

Si,m+1 = z1y (4.2)

being1, =[1,..., 1]" € R" a n-dimensional vector of ones.

Optimal assignment. The original NetVLAD assignment computes a per-
row softmax over S to obtain the distribution of each feature’s mass across

Figure 4.2: Overview of our
method. First, the DINOv2 back-
bone extracts local features and
a global token from an input im-
age. Then, a small MLP, score pro-
jection, computes a score matrix
for feature-to-cluster and dustbin
relationships. The optimal trans-
port module uses the Sinkhorn al-
gorithm to transform this matrix
into an assignment, and subse-
quently, dimensionality-reduced
features are aggregated into the
final descriptor based on this as-
signment and concatenated with
the global token.
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the clusters. However, this approach only considers the feature-to-cluster
relationship and overlooks the reverse —the cluster-to-feature relation. For this
reason, we reformulate the assignment as an optimal transport problem where
the features’ mass, y = 1,, must be effectively distributed among the clusters or
the ‘dustbin’, k = [1,,, n — m]T. We follow SuperGlue [4] and use the Sinkhorn
Algorithm [103, 104] to obtain the assignment P € R"*("*+1) such that

Pl =p and P'1, =« (4.3)

This algorithm finds the optimal transport assignment between distributions y
and « iteratively normalizing rows and columns from exp (S). Finally, we drop
the dustbin column to obtain the assignment P = [p*,l, e, p*,m], where pP.

stands for the j column of P.

4.1.3 Aggregation

Once the feature assignment in our SALAD framework is computed as detailed
in Subsection 4.1.2, we focus on the aggregation of these assigned features to
form the final global descriptor. The aggregation process in NetVLAD involves
combining all features assigned to each cluster C;. However, we introduce three
variations:

Dimensionality reduction. To efficiently manage the final descriptor size, we
first reduce the dimensionality of the tokens from R? to R’. This is achieved by
processing the features through two fully connected layers, precisely adjusting
the size of the feature vectors while retaining the essential information from the
task.

fi = WfZ(G(wfl (t) + bf])) + bf1 (4.4)

Aggregation. Based on the assignment matrix derived using the Sinkhorn
Algorithm, each feature is aggregated into its assigned cluster. Differently from
NetVLAD, we do not subtract the centroids to get the residuals. We directly
aggregate these features with a summation, reducing the incorporated priors
about the aggregation. Viewing the resulting VLAD vector as a matrix V € R"™*/,
each element V; x € R is computed as follows:

n
Vik= > Pk fik (4.5)
i=1

where f; x corresponds to the k™ dimension of f;, with k € {1,...,1}.

Global token. To include global information about the scene not easily incor-
porated into local features, we also incorporate a scene descriptor g computed
as:

&= Wgz(a(wgl (tn+1) + bgl)) +byg, (4.6)

where t,,4; is the global token from DINOv2. We then concatenate g with V
flattened. Following NetVLAD, we do an L2 intra-normalization and an entire
L2 normalization of this vector, which yields the final global descriptor.

12
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4.2 Experiments

To rigorously evaluate the effectiveness of our proposed contributions, we
conducted exhaustive experiments following standard evaluation protocols.

4.2.1 Implementation Details

We ground our training and evaluation setups on the publicly provided frame-
work by MixVPR 1.

For the architecture, we opt for a pretrained DINOv2-B backbone, targeting a
balance between computational efficiency and representational capacity. We
only fine-tune the final 4 layers of the encoder, which significantly enhances the
performance without markedly increasing training time. For the fully connected
layers, the weights of the hidden layers Wy,, Wy, and W, have 512 neurons and
use ReLU for the activation function . To optimize feature handling, we employ
a dimensionality reduction, compressing feature token dimensions from d = 768
to [ = 128, and the global to 256. We use m = 64 clusters, resulting in a global
descriptor of size 128 X 64 + 256. We also report results with smaller descriptors,
with size 512 + 32 (m = 15, | = 32), and 2048 + 64 (m = 32, [ = 64).

We train on GSV-Cities [33], a large dataset of urban locations collected from
Google Street View. Given the impressive representation power of DINOv2,
our pipeline achieves training convergence within just 4 epochs. Using a batch
size of 60 places, each represented by 4 images, the training is completed in 30
minutes on a single NVIDIA RTX 3090. We use the multi-similarity loss [74]
and AdamW [105] for the optimization, with an initial learning rate set to 6e—5.
To ensure an effective learning rate, we linearly decay the initial rate at every
iteration so at the end of the training is 20% of the initial value. We use a dropout
rate of 0.3 on the score projection and dimensionality reduction neurons. As
our model is agnostic to the image input size (as long as it can be divided in
14 x 14 patches), we evaluate on images of size 322 X 322 but train on 224 x 224
to speedup training time.

To validate our experiments and select the hyperparameters, we monitored the
recall in the Pittsburg30k-test [106]. We observed that, in the long run, most
configurations perform similarly, but rapid convergence on a few epochs is more
sensitive to the hyperparameters.

4.2.2 Results

We benchmarked our model against several single-stage baselines, namely
NetVLAD [5] and GeM [30] as two representative tradicional baselines, and
Conv-AP [33], CosPlace [6], MixVPR [29] and EigenPlaces [107] as the four most
recent and best performing baselines in the literature. The evaluation spanned a
diverse array of well-established datasets: MSLS Validation and Challenge [39],
which are comprised of dashcam images; Pittsburgh250k-test [106], featuring
urban scenarios; SPED [92], a collection from surveillance cameras; NordLand,
notable for its seasonal variations from images captured from the front of a train
traversing Norway; and SF-XL [6], a large urban dataset to evaluate VPR at scale.
We use Recall@k (R@K) as the metric for all our experiments, as it is standard
in related work. We use evaluation data and code from MixVPR [29], which
considers retrieval as correct if an image at less than 25 meters (or two frames
for Nordland) from the query is among the top-k predicted candidates.

1: https://github.com/
amaralibey/MixVPR


https://github.com/amaralibey/MixVPR
https://github.com/amaralibey/MixVPR
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Table 4.1: Comparison against single-stage baselines. We compare DINOv2 SALAD against two popular baselines [5, 30] and the four
baselines that show best results in recent literature [6, 29, 33, 107]. Our slim version already obtains state-of-the-art results in all metrics. Our
full model outperforms all previous results by a significant margin. Note, in particular, the large improvement in the most challenging
benchmarks, MSLS Challenge and NordLand. t We reproduced GeM results training during 80 epochs following MixVPR training pipeline.

Method MSLS Challenge MSLS Val NordLand Pitts250k-test SPED
Desc. size  Latency (ms) R@1 R@5 R@l R@5 R@l R@5 R@l R@5 R@l R@5
NetVLAD [5] 32768 141 35.1 47.4 82.6 89.6 326 471 90.5  96.2 787 883
GeM [30]+ 1024 114 49.7 64.2 782 86.6 216 373 87.0 944 66.7 83.4
Conv-AP [33] 8192 1.22 54.2 66.6 831 903 427 589 929 977 792 88.6
CosPlace [6] 2048 2.59 67.2 78.0 87.4 93.0 442 597 921 975 80.1 89.6
MixVPR [29] 4096 1.37 64.0 75.9 88.0 927 584 746 946  98.3 85.2 921
EigenPlaces [107] 2048 2.65 67.4 77.1 89.3 937 544 688 941  98.0 699 829
DINOv2 SALAD 512 + 32 2.33 70.8 83.6 89.3 949 612 789 93.0 974 885 947
DINOv2 SALAD 2048 + 64 2.35 737 85.9 90.5 954 704 857 94.8  98.3 89.5 949
DINOv2 SALAD 8192 + 256 2.41 75.0 88.8 922 96.4 76.0 89.2 951 985 921  96.2

Table 4.2: Comparison against baselines with re-ranking. We compare our single-stage DINOv2 SALAD with methods that perform a
re-ranking stage to improve performance. Without using re-ranking, our DINOv2 SALAD outperforms all other methods while being orders
of magnitude faster and more memory-efficient. Latency metrics obtained from [53] using a RTX A5000. Latency for DINOv2 SALAD was
computed using a RTX 3090. Memory footprint is calculated on the MSLS Val dataset, which includes around 18, 000 images.

Desc. size Latency (ms MSLS Challenge MSLS Val
Method Global Local Memory (GB) g rieval };{Eerariking Rel R@5 Rell. Rl Ros Ko
Patch-NetVLAD [51] 4096 2826 x 409 908.30 9.55 8377.17 481 576 605 795 862 877
TransVPR [52] 256 1200 X 256 2272 6.27 1757.70 639 740 775 868 912 924
R2Former [53] 256 500 x 131 47 8.88 202.37 730 859 8838 897 950 962
DINOv2 SALAD (ours) 8192 + 256 0.0 0.63 2.41 0.0 750 88.8 913 922 964 97.0

Table 4.3: Ablations. The first two rows correspond to two baselines in the literature [5, 28], the rest to different aggregations appended to
DINOV2 including our DINOv2 SALAD. Note that only DINO NetVLAD, with a significantly bigger descriptor size than ours, is able to
show competitive results. We outperform all the rest DINOv2 baselines of similar descriptor sizes by a large margin.

Method MSLS Challenge MSLS Val NordLand Pitts250k-test SPED
Desc.size R@1 R@5 R@I0 R@1 R@5 R@10 R@l R@5 R@I10 R@1 R@5 R@10 R@l R@5 R@I0
ResNet NetVLAD [5] 32768 351 474 517 82.6 89.6 920 326 471 533 90.5 962 97.4 787 883 914
DINOv2 AnyLoc [28] 49152 422 535 581 687 782 818 161 254 304 872 944 965 853 944 954
ResNet SALAD 8192 57.4 708 749 832 895 918 333 49.6 558 914 969 979 750 867 89.8
ConvNext [108] SALAD 8192 639 752 801 855 924 945 478 643 703 939 979 988 83.5 909 929
DINOv2 GeM 4096 626 783 83.0 854 939 950 354 525 59.6 895 96.5 98.0 83.0 921 939
DINOv2 MixVPR 4096 721 850 883 90.0 951 96.0 63.6 80.1 846 94.6 983 99.3 89.8 949 961
DINOv2 NetVLAD 24576 75.8 86.5 898 924 959 969 718 865 90.1 95.6 98.7 99.3 90.8 957  96.7

DINOv2 NetVLAD (dim. red.) 8192 733 856 883 901 954 96.8 701 86.5 90.2 954 984 991 90.6 954 96.7
DINOv2 SALAD (ours) 8192+256 75.0 888 913 922 964 97.0 76.0 89.2 92.0 951 985 991 921 96.2 96.5
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As shown in Table 4.1, our model outperforms all previous methods on all
datasets and all metrics. Even the smaller 512 + 32 version already surpasses
previous models with bigger descriptors on most datasets. It is worth highlight-
ing the metrics saturation observed in MSLS Val, Pitts250k-test and SPED, and
on the other hand the challenging nature of MSLS Challenge and NordLand.
The MSLS Challenge dataset, with its diversity, extensive size and closed labels,
and NordLand, with its extreme sample similarity and seasonal shifts, emerge
then as key benchmarks for assessing VPR performance. Although our DINOv2
SALAD shows a significant improvement on all benchmarks, it is precisely in
MSLS Challenge and NordLand where we obtain the most substantial recall
increases, with +7.6%, +11.7% and +17.6%, +14.6% for R@1, R@5 respectively
over the second best.

For SF-XL, as shown in Table 4.4, our method also achieves the best results
to date. This is remarkable, considering that the previous state of the art was
trained on this dataset, whereas our method never used any image of San
Francisco when it was fine-tuned.

In Table 4.2, we compare our DINOv2 SALAD method, which solely operates
on a single retrieval stage, against the leading two-stage VPR techniques. In this
comparison, we include the best performing models in the literature, namely
R2Former [53], TransVPR [52], and Patch-NetVLAD [51], which incorporate a
re-ranking refinement. Note how our DINOv2 SALAD, despite being orders of
magnitude faster and smaller in memory, significantly outperforms all these
two-stage methods on all benchmarks. This finding not only highlights the
efficiency of our model but also demonstrates the effectiveness of global retrieval
using our novel SALAD aggregation. Additionally, considering our method’s
reliance on local features, we believe that a re-ranking stage could also be
applied, potentially increasing our recall metrics but at the price of a higher
computational footprint.

4.2.3 Ablation Studies

Effect of DINOv2. We assess the impact of the DINOv2 backbone and our
optimal transport aggregation SALAD separately. For this, we compare with
the existing baselines of ResNet NetVLAD or AnyLoc, this last one applying
a VLAD on top of a pretrained DINOv2 encoder. We integrate the DINOv2
backbone with various aggregation modules, obtaining a handful of performant
techniques that improve their respective previous results. As shown in Table 4.3,
all of these outperform the baselines, even though AnyLoc already uses DINOv2.
This validates the DINOv2’s integration in end-to-end fine-tuning to refine its
capabilities.

Effect of SALAD. Our experiments in Table 4.3 show that aggregation also
matters. Even the recent MixVPR aggregation coupled with DINOv2 does not
match the performance of DINOv2 NetVLAD and DINOv2 SALAD. We believe
that the DINOv2 backbone is especially suitable for local feature aggregation, as
its features work remarkably well in dense visual perception tasks [54, 109, 110].

Method Desc. size SF-XL Test vl  SF-XL Test v2
CosPlace [6] 2048 76.4 88.8
EigenPlaces [107] 2048 84.1 90.8
DINOv2 SALAD 8192 + 256 88.6 94.8

Table 4.4: Results on SF-XL.
(R@1) Our DINOv2 SALAD
achieves unprecedented results
on SF-XL despite never seeing any
single image of San Francisco dur-
ing VPR finetuning.
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Model Dim.size #Params. Latency (ms) MSLS Val R@1
S 384 21IM 1.30 90.5
B 768 86M 2.41 92.2
L 1024 300M 7.82 92.6
G 1536 1100M 24.93 91.7

Although DINOv2 NetVLAD achieves comparable performance to SALAD,
it employs a descriptor almost three times as big. Besides, the generalization
performance of DINOv2 NetVLAD is limited, as observed in NordLand results.
We attribute this to NetVLAD’s priors initialization with urban scenarios, which
constrain the convergence of the system. In our experiments we also trained a
slimmer DINOv2 NetVLAD version, whose features are dimensionally reduced
as described in Subsection 4.1.3, targetting a final descriptor of roughly the
same size as SALAD. In this fairer setup, DINOv2 SALAD clearly outperforms
DINOv2 NetVLAD. We also evaluate SALAD on top of ResNet and ConvNext
backbones, which improves over baseline ResNet NetVLAD but is significantly
worse than using DINOv2. This indicates that SALAD is specially suited for
high spatial resolution features, like the ones from DINOv?2.

Effect of hyperparameters. DINOv2 comes in different sizes that affect the
number of parameters, inference speed, and representation capabilities. As
shown in Table 4.5, more parameters do not always result in better performance.
Excessively big models might be harder to train or prone to overfitting the
training set. From these results, we chose the DINOv2-B backbone, which
exhibits a great balance between performance and size and speed. Regarding
descriptor size, we observed (Table 4.1) that changing m and / allows to get
slimmer versions with competitive performance. For the number of blocks to
train, as shown in Table 4.6, fine-tuning two or four block report the best results
without significant computation overhead.

Effect of SALAD components. In Table 4.6, we show how different components
of our SALAD pipeline affect the final performance. Both the global token, which

MSLS Val
Method R@ R@5 R@I0
DINOv2 SALAD (frozen) 885 950 962

DINOv2 SALAD (train 2 last blocks) 92.0 96.5 97.0
DINOvV2 SALAD (train 4 last blocks) 92.2 96.4 97.0
DINOv2 SALAD (train 6 last blocks) 91.6  96.2  97.0
DINOv2 SALAD (train all blocks) 89.2 951 9.1

DINOv2 SALAD w/o dustbin 914 958 96.2
DINOv2 SALAD w/o global token 91.8 96.0 96.2
DINOv2 SALAD (Dual Softmax) 91.9 957 96.5

DINOv2 SALAD 92.2 964 97.0

Table 4.5: DINOv2 configura-
tions and performances.

Figure 4.3: Heatmap of local fea-
tures importance. Left images
show the original pictures, their
right counterparts represent the
weights not assigned to the ‘dust-
bin’. Note how the network learns
to discard uninformative regions
like skies, roads or dynamic ob-
jects, and instead focus on dis-
tinctive patterns in buildings and
vegetation. We attribute its focus
on distant buildings to their in-
variance to viewpoint change.

Table 4.6: Ablation study of the
SALAD components.
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appends global information not captured in local features, and the dustbin,
which helps in distilling the aggregated features, contribute to the performance
of SALAD. We also trained a model using a dual-softmax [111] to solve the
optimal transport assignment, following LoFTR and Gluestick [3, 112]. Although
dual-softmax achieves only slightly worse performance, the Sinkhorn Algorithm
is theoretically sound and provides a better acronym to our method.

4.2.4 Introspective Results

We provide an introspection of our model’s performance through a series of
illustrative figures. Figure 4.3 visualizes the weights that are not assigned to
the “dustbin’, offering insight into the parts of the input image that the network
considers informative. As the ‘dustbin’ assignment is completely learnt by the
network, some discarded features might be counter-intuitive. However, we
observe that it typically removes dynamic objects and focuses on the most
distinctive and invariant parts of the image. In Figure 4.4, we display the
assignment distribution of patches from two different images depicting the
same place. It demonstrates the model’s ability to consistently distribute most
of the weights into the same bins for patches representing similar regions. Such
repeatable and consistent assignment across different images of the same place
is crucial for the reliability and performance of the system. Finally, in Figure 4.5,
we showcase various query images alongside their respective top-3 retrievals
made by our system. DINOv2 SALAD is able to retrieve correct predictions
even under challenging conditions, such as severe changes in illumination or
viewpoint.

Figure 4.4: Illustration of feature-
to-cluster assignments. See at the
leftmost and rightmost part of the
figure two different views of the
same place. Framed by red and
blue squares we highlight two cor-
responding patches in each of the
images. The central part of the fig-
ure shows the feature-to-cluster
assignments for these patches.
Note how DINOv2 SALAD cor-
rectly assigns the features to the
same bins for both views, even
with different local texture.
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4.3 Conclusions and Limitations

In this chapter, we have proposed DINOv2 SALAD, a novel model for VPR that
outperforms previous baselines by a substantial margin. This achievement is
the result of combining two key contributions: a fine-tuned DINOv2 backbone
for enhanced feature extraction and our novel SALAD (Sinkhorn Algorithm for
Locally Aggregated Descriptors) module for feature aggregation. Our extensive
experiments demonstrate the effectiveness of these modules, highlighting
the model’s single-stage nature and exceptionally fast training and inference
speed.

While our work brings significant improvements in performance, it is not
without limitations. Primarily, the adoption of DINOv2 as our backbone results
in slower processing speeds compared to ResNet-based methods. Besides,
although SALAD is a general aggregation module, its effectiveness is tied to the
choice of backbone. It excels with DINOv2, which offers high spatial resolution
features, but it is less suited for coarser features. Additionally, in SALAD we
use an optimal transport assignment in its simplest form. More sophisticated
constraints could improve the resulting assignment, a very relevant aspect for
our future work.

Figure 4.5: DINOv2 SALAD
qualitative results at MSLS. The
left column shows several queries
and the three other ones shows
the top-3 candidates retrieved by
our DINOv2 SALAD. Candidates
are framed in green if they cor-
respond to the same place as the
query, and in red if they do not.
Note the correct retrievals under
seasonal, weather, viewpoint and
day-night changes. Note also a
challenging failure case in the last
row, due to non-discriminative
image content.
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Visual Place Recognition plays a critical role in many localization and
mapping pipelines. It consists of retrieving the closest sample to a query
image, in a certain embedding space, from a database of geotagged references.
The image embedding is learned to effectively describe a place despite
variations in visual appearance, viewpoint, and geometric changes. In this
work, we formulate how limitations in the Geographic Distance Sensitivity
of current VPR embeddings result in a high probability of incorrectly
sorting the top-k retrievals, negatively impacting the recall. In order to
address this issue in single-stage VPR, we propose a novel mining strategy,
CliqueMining, that selects positive and negative examples by sampling
cliques from a graph of visually similar images. Our approach boosts the
sensitivity of VPR embeddings at small distance ranges, significantly
improving the state of the art on relevant benchmarks. In particular, we
raise recall@1 from 75% to 82% in MSLS Challenge, and from 76% to
90% in Nordland.

Visual Place Recognition refers to identifying a place from a query image
I, € R"™®x3 which boils down to retrieving the K closest images {1, . .., Ix}
from a database where they are georeferenced. VPR is fundamental in several
computer vision applications. It constitutes the first stage of visual localization
pipelines by providing a coarse-grain pose that reduces the search space in large
image collections. This pose can be later refined by robust geometric fitting
from local feature matches [8, 113]. It is also essential in visual SLAM, in which
it is used to detect loop closures and remove geometric drift [13, 95], or as the
basis for topological SLAM [114, 115].

In VPR pipelines, every RGB image I; is typically mapped to a low-dimensional
embedding x; € R by a deep neural network fg : I; — x; that extracts and
aggregates visual features that are relevant for the task. The closest samples
are retrieved by a nearest-neighbour search using distances in the embedding
space d? = |[x; — xi||2, which hopefully correspond to the views with smallest
geographic distance d;»g = ||pg — pill2 between them, with p; € R? standing for
the camera position for I;. The challenge lies on learning the wide variability
in the visual appearance of places, caused among others by environmental,
weather, seasonal, illumination and viewpoint variability, or dynamic content.
Recent years have witnessed significant advances in VPR, driven among others
by enhanced network architectures [16, 29, 33, 53, 116], loss functions [32, 64, 65,
74], or two-stage re-ranking strategies [51-53, 58, 117].

In this work, we start by analyzing the Geographic Distance Sensitivity (GDS)
of VPR embeddings, that can be illustrated by a plot of the distribution of
embedding distances d¢ vs. geographic distances d¢, as in the centre of Figure 5.1.
The plot shows two cases: in orange the distribution a typical VPR pipeline
would achieve, and in blue the distribution that would be obtained by a model
with enhanced GDS, result of training using our novel CliqueMining, which we
will introduce later. Note how a high variance and a small slope results in a high
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The code and models are avail-
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probability of incorrectly sorting the top-5 retrievals. The top-1 retrieval on the
left is, as it is written in the title, close but not there. By decreasing the variance
and increasing the slope the probability of an incorrect ordering decreases.

Figure 5.2 shows this phenomenon occurring in real datasets when using the
state-of-the-art baseline DINOv2 SALAD [16]. Observe how the top-5 retrievals
without our CliqueMining in MSLS [39] and Nordland [76] are not properly
sorted by real geographic distance. While two-stage re-ranking approaches
might assist in alleviating this, their local feature matching stage come with a
prohibitive storage and computational footprint. Additionally, recent methods
using only global features [16, 59] already surpass those that involve local features
for re-ranking. Although mining strategies also aim to improve performance
by compiling informative batches during training, existing strategies are not
specifically tailored to enhance GDS in densely sampled data.

In addition to analyzing GDS, in this work we propose a novel mining strategy,
CliqueMining, explicitly tailored to address it. Our hypothesis is that, in order
to boost the GDS, the training batches should include images of highly similar
appearance at small distances, that are not explicitly searched for in current
mining schemes. We achieve that by organizing our training samples as a graph
from which we extract cliques that represent sets of images that are geographi-
cally close. Our experiments show that, in this way, using CliqueMining on top
of a baseline model obtains substantial improvements in recall metrics.

Figure 5.1: Geographic Distance
Sensitivity (GDS). We illustrate a
typical case of top-5 retrieval with-
out (left) and with (right) our pro-
posed CliqueMining. Note how
retrievals on the left are not prop-
erly sorted based on geographic
distance, impacting the recall for
the selected threshold (green cir-
cle). We conceptualize this effect
as GDS in the central plot, which
shows the distribution of descrip-
tor distances against geographic
distances. A low slope of the mean
(orange line) and a high disper-
sion (orange area), indicative of
low GDS, raise the probability of
an incorrect order. To address this,
we present CliqueMining, a novel
batch selection pipeline that in-
creases the GDS of a model (blue
line and area) and produces more
correct retrievals.
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5.1 Analysis of Geographic Distance Sensitivity

As already said, Figure 5.2 shows examples of DINOv2 SALAD [16] retrievals
on MSLS Train [39] and Nordland [76]. Although the recall@1 for these specific
queries is zero, dismissing the model’s performance as entirely inaccurate would
be unfair. Within the top-5 retrievals, some predictions are indeed correct, and
most incorrect predictions are relatively close to the decision threshold. These
examples uncover a common issue in VPR models: their inability to finely
discriminate between similar viewpoints. Note how our novel CliqueMining,
that we will describe in next sections, discriminates better for this particular
case.

We explain this phenomenon using the concept of GDS, i.e., the model’s ability
to assign smaller descriptor distances to pairs of images that are geographically
closer. VPR models should have a high GDS, that is, they should produce
descriptors that maximize the probability P(d{ < d; | dlig < df ). Seeking for a
high GDS requires two desiderata to hold.

(i) The expected value of the descriptor distance of a pair should be smaller than
that of a pair geographically further from the query E[d} — d]e. | df < d}g ] <.

(if) The dispersion of descriptor distances conditioned on a certain geographic
distance should be as small as possible E[(d] — E[d} | d;g])2 | d;g] — 0.

Failing to achieve these two leads to a high probability of retrieving an incorrect
order of candidates. We hypothesize that VPR models struggle to precisely rank
between closely spaced locations due to their limited GDS at small distance
ranges. This is because current training pipelines are effective at achieving
highly invariant representations that encode viewpoints coarsely, but not at
learning the subtle cues to disambiguate between close frames.

Figure 5.2: Top-5 retrievals for
DINOvV2-SALAD [16] without
and with our CliqueMining in
MSLS [39] and Nordland [76].
Green frames represent correct
retrievals and red frames incor-
rect ones, under the standard 25-
meters (1 frame for Nordland) de-
cision threshold. Our CliqueM-
ining achieves a better sorting
of the retrievals with respect to
their geographical distance to the
query, which positively impacts
the recall.
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This effect can be further assessed in Figure 5.3, which shows the top-{1, 5, 10}
recall of the baseline DINOv2 SALAD for different threshold values. The vertical
green dashed lines represent the typical thresholds of 25 meters and 1 frame
used in MSLS and Nordland. Note how the recall, specially the recall@1, keeps
increasing for slightly larger values than the 25 meters and 1 frame thresholds.
This indicates that a significant fraction of false negatives is very close to the
decision threshold, which lowers the recall.

With our novel CliqueMining strategy, detailed in next section, the reader
will assess how we are able increase the GDS for small ranges (Fig. 5.5) and
consequently improve recall metrics, as we will show in the experimental
results.

5.2 Method: CliqueMining

Our novel mining strategy, CliqueMining, selects challenging batches according
to geographic and descriptor similarity criteria, alleviating the GDS issues
identified in Section 5.1. Figure 5.4 shows an overview of our method. To
effectively mine a challenging batch, we first build a graph of image candidates
(Subsection 5.2.1) and sample places from it (Subsection 5.2.2). Finally, we select
challenging pairs and train the network using the Multi-Similarity (MS) loss
(Subsection 5.2.3).

5.2.1 Graph Creation

In contrast with the sparse nature of viewpoint sampling in GSV-Cities [33],
we propose to use denser batches, with higher spatial continuity, so the the
network also learns the subtle changes resulting from small camera motion. To
effectively mine such challenging batches, we first create a graph, G = (V, E),
representing a cluster of candidates. Vertices from this graph, v; € V, are frames
from sequences with very similar appearance, and two vertices, v; and v}, are
connected by an edge ¢;; € E if both frames lie within a given distance threshold
in meters, T.

E= {eij | d(vi,vj) <1, Yu;,vj € Vi (5.1

To populate the graph, we consider all image sequences as defined in the MSLS
training set, as our place-based batches do not require a split between query
and database images. We start by sampling a reference sequence from a city,
Srefs and subsequently, sampling S more different sequences, {s1, ..., ss} based
on their similarity with s,.s. For computational efficiency, we determine the

Figure 5.3: Recall@K vs. deci-
sion threshold on MSLS Train
(val) and Nordland for DINOv2-
SALAD [16] without CliqueM-
ining. Observe how the steep
curve around the decision thresh-
old (green dashed line) indicates
a significant number of closely re-
trieved images. Boosting the GDS
of a model would alleviate this,
increasing its recall.
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Graph Creation
Ref

Place Sampling

similarity between two sequences by only comparing the descriptors of their
respective central frames. We incorporate every frame from these sequences into

the graph, which ensures the presence of adjacent frames within the batches.

Edges are determined by the Universal Transverse Mercator (UTM) locations of
each frame. Algorithm 1 summarizes this process.

Algorithm 1 Graph creation.

Initialize G = (V, E) as empty graph
Sample city
V — {vi|vi € syer}, Srer ~ {s|s € city}
repeat S times

5~ P(Slsref) oc sim(s, Sref)

V < VU{vjlv; € s}
end
E « {ei/|d(vi,0/) < T,VU{,U/ € V}

5.2.2 Place Sampling

To construct a single batch, we start from the graph of candidates G, generated
as explained in Subsection 5.2.1. G is a convenient representation for place
sampling, as it facilitates the identification of distinct viewpoints yet of highly
similar appearance, and labels are easily assigned based on connectivity. In
our pipeline, we mine batches of N places, each place defined as a set of K
images, where each image is within a range 7 of each other. Sampling a place is
equivalent to finding a clique, C, within G

C ~{C|Vv;,v;€C, e e E, CCV,|C| =K}. (5.2)

Thus, to compile a batch of N places, we iteratively extract N cliques from G.

After finding each clique, all its frames, as well as their connected vertices are
removed from G. This prevents overlap in subsequent cliques, ensuring that
each sampled place is at least T meters from each other. In the uncommon case
of exhausting all cliques in G, we create a new graph starting from a new s, ¢
and continue the process. The resulting batches, an example of them shown
in Figure 5.4, showcase highly similar yet far apart images, illustrating the
effectiveness of our sampling to create difficult batches. Algorithm 2 gives an
overview of the sampling procedure.

Figure 5.4: Overview of
CliqueMining. First, we create a
graph of candidates by sampling
a set of sequences {s1,...,ss}
that are similar to a reference one
Sref (left). We then sample places
by finding cliques within the
graph (center). Observe that the
resulting batches contain very
similar looking places, which
boost the GDS (right).
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Algorithm 2 Graph sampling.

Input: Graph G = (V,E)

Initialize empty batch of images B

Initialize empty batch of labels L

for all n from 1 to N do
Sample clique C ~ {C | Vv;,v; € C, e;; € E, CC V, |C| =K}
B« BUC
L« LuU{n}
G « G—{v; UAdj(v)|vi € C}

end for

5.2.3 Training Pipeline

In practice, we mine a large set of batches offline and once, as described in
Subsection 5.2.1 and Subsection 5.2.2, and use them during all epochs. To do
this, we use the embeddings from a model pre-trained without CliqueMining.
Most mining strategies are typically updated every few iterations. However,
this increases the computational overhead, and for our CliqueMining we did
not observe any improvement by updating the batches.

In order to smooth the gradients from our hard training images, we combine
them with images from GSV-Cities. In this manner, we include per batch half of
the images from our CliqueMining and half from GSV-Cities, so the network
can learn both the fine-grain GDS and the sparse discriminative capabilities
from GSV-Cities.

As we use the MS loss [74], during training we use their online selection method
for weighted negative and positive pairs. A negative pair, {x;, x]-}, is selected
from a batch if its distance is lower than the hardest positive pair plus a margin,
€,
lxi = xjll2 < max|fx; = xkl|2 + €, (5.3)
g <t

and, conversely, a positive pair is selected when

llxi - xjll2 > min [|x; - x| — €. (5.4)
a5

5.3 Experiments

In this section, we re-train state-of-the-art VPR baseline models using our
proposed CliqueMining. Evaluation on various benchmarks showcases the
increased discriminative capacity of the models. In the following, we describe
the implementation details, benchmarks used, quantitative and qualitative
results, as well as ablation studies.

5.3.1 Implementation Details

We use CliqueMining with the recent DINOv2 SALAD [16], the current state-of-
the-art VPR model as well as on MixVPR [29], a recent model with competitive
performance. For each of them, we use their codebase and rigorously follow
their training pipelines and hyperparameters. We use batches of size 60 in
DINOv2 SALAD and 120 in MixVPR, where half of the places come from our
pipeline and the other half from GSV-Cities. We create a new graph for every
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Method NordLand MSLS Challenge MSLS Val Pitts250k-test
R@l R@5 R@I0 R@l R@5 R@I0 R@l R@5 R@10 R@ R@5 R@10
NetVLAD [5] 326 471 533 351 474 517 82.6 896 920 90.5 962 974
GeM [30] 216 373 442 497 642 670 782 866 89.6 87.0 944 963
CosPlace [6] 529 69.0 75.0 67.5 781 813 87.6 938 949 923 974 984
MixVPR [29] 584 746 80.0 640 759 80.6 88.0 927 946 946 983 99.0
EigenPlaces [107] 544 688 741 674 771 817 89.3 937 950 941 980 987
SelaVPR (global) [116] 472 66.6 741 69.6 869 90.1 877 958 96.6 927 98.0 989
SelaVPR (re-ranking) [116]  60.0 757  79.6 735 875 90.6 90.8 964 97.2 95.7 988 99.2
DINOv2 SALAD [16] 76.0 892 920 750 888 913 922 964 970 951 985 991
MixVPR [29] CM 69.6 807 835 65.6 771 79.2 88.8 939 946 91.8 967 981
DINOv2 SALAD [16]CM  90.7 96.6 97.5 82.7 912 927 942 972 974 952 988 99.3

batch. We start by sampling s, from the set of existing sequences. We then
sample S = 15 sequences from the same city based on the descriptor similarity
of their central frames. Edges are assigned with 7 = 25. Cliques are searched
using the NetworkX library! using the unrolled algorithm by Tomita et al. [118].
We create offline a large collection of 4000 batch examples before starting the
training, and at every iteration, we randomly select one of those. To create the
batches we use all the non panoramic images in the MSLS Training set. For
the ablation studies we divided this dataset in val and train subsets, setting
Melbourne, Toronto, Paris, Amman, Nairobi and Austin for val and the rest 16
cities for train.

5.3.2 Results

We evaluate the effect of our CliqueMining by comparing the performance of
two recent high-performing models, DINOv2 SALAD [16] and MixVPR [29],
with and without it at training time. We also benchmarked these against classic
methods, namely NetVLAD [5] and GeM [30], and recent performant baselines,
specifically CosPlace [6], EigenPlace [107], and SelaVPR [116]. Additionally, we
include in the comparison results of SelaVPR [116] with re-ranking, as it is the
current state of the art among two-stage techniques.

We report results on standard evaluation datasets. Nordland [76] is a continuous
video sequence taken from a train traveling through Norway across different
seasons. The difficulty of this dataset arises from the substantial appearance
differences between query (summer) and reference (winter), as well as the dense
temporal sampling. MSLS Challenge and Validation [39] is a large and dense
collection of dashcam images recorded in cities around the globe. The various
seasonals, time, and environmental changes depicted make it one of the least
saturated datasets in VPR. Pittsburgh-250k [106] is known for its significant
viewpoint changes, but current pipelines have highly saturated performance.

As previous works, we report recall@{1, 5, 10}, which measures the rate of
correct predictions among the top-{1,5, 10} retrieved images. An image is
considered correct if it lies within a 25 meters-radius circle from the query,
or at most one frame apart for the Nordland dataset. Results are reported on
Table 5.1.

On Nordland, training with our CliqueMining significantly improves both
DINOvV2 SALAD and MixVPR, obtaining, for the first time, a recall@1 bigger
than 90% (+14.7% over the closest baseline). This milestone highlights how our
hard batches help in boosting the network’s GDS. This is a crucial aspect in

Table 5.1: Comparison against
single-stage baselines and
SelaVPR as representative of
two-stage baselines. Observe
the significant increase in the
recall in MSLS and Nordland
when using CliqueMining (CM).
Both are the less saturated
datasets, hence with most room
for improvement, and the most
densely sampled, which is the
case our novel CliqueMining is
tailored for.

1: https://networkx.org/
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Nordland, where the high similarity between video frames and the strict one-
frame distance threshold need outstanding sensitivity. Note that CliqueMining
also improves significantly the recall rates for MixVPR.

On MSLS Challenge and Validation, our CliqueMining with the DINOv2 SALAD
architecture improves over all previously reported results. The improvement is
most notable on the Challenge, where CliqueMining raises +7.7% the recall@1.
While training on the MSLS Train dataset contributes to these results, it is
noteworthy that SelaVPR, which also trains on MSLS, does not achieve a
comparable performance, even with re-ranking. The effect of CliqueMining on
MixVPR is dimmer, although it also improves over the baseline without it. We
argue that its global aggregation smooths out local details, which are critical for
raising the GDS.

On Pittsburgh-250k, our pipeline obtains a slight improvement over the base-
line DINOv2 SALAD and obtains comparable performance to SelaVPR with
re-ranking. We outperform SelaVPR without re-ranking, which is a more com-
parable baseline. Note, in any case, that SelaVPR is fine-tuned on Pittsburgh30k
before testing on Pittsburgh250k, while ours was trained in GSV-Cities and
MSLS. MixVPR with CliqueMining downgrades performance. Training on
MSLS data, where almost all images are forward-facing, has a small impact on
Pittsburgh250k, which exhibits substantial viewpoint variability.

Note how we sorted the datasets in Table 5.1 from more to less image density,
and how this also sorted naturally the recall@l gains of CliqueMining from
bigger to smaller. This supports our observation that GDS issues are more
relevant the higher the image density, and that CliqueMining is able to improve
them. From these results we can also conclude that a substantial part of the
challenge in the less saturated VPR datasets (Nordland and MSLS) is associated
to GDS issues, which is a relevant insight.

Observe in Figure 5.5 the effect of CliqueMining on the GDS of the DINOv2-
SALAD model [16] in MSLS and Nordland, as a plot of the distribution of the
pairwise descriptor distances for different geographic distances. As sought,
the GDS is highly boosted (steep curve and low dispersion) by CliqueMining
for close geographic distances. Observe the similarity of this result with the
illustrative graph in Figure 5.1. Although not specifically tailored for, CliqueMi-
ning also reduces the dispersion for large distances, probably due to leveraging
batches with more informative gradients. This enables the model to correctly
sort candidates that are near, and still discriminate from those too far apart.

We finally remark the low computational footprint of our CliqueMining.
CliqueMining is a mining strategy for training, and hence does not increase

Figure 5.5: Mean =+ standard de-
viation of descriptor distances
against geographic distances,
without and with CliqueMining.
Our Clique Mining boosts the geo-
graphic local sensitivity for small
geographic distances, and flattens
it for large distances. This results
in higher discriminativity around
the decision threshold and better
metrics. Note the cut in distances
and values for high distances ag-
gregated at the right part.
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at all the computational footprint at inference. This is in contrast to two-stage
methods, that increase it by a factor of several orders of magnitude. Additionally,
the overhead is modest at training. Our ablations shows that the graph creation
only needs to be done once before training, and there is no benefit in updating
it. In total, the computational overhead of CliqueMining roughly amounts to
only 20% of the total training time in our experiments.

5.3.3 Ablation Study

MSLS Train (Val Subset)
Method R@I R@5 R@I0
DINOv2 SALAD [16] 76.3 85.1 87.3
Most-similar 81.61 + 0.50 89.43 + 0.53 91.02 + 0.53
Weighted random sampling  81.98 + 0.75 89.72 £ 0.22 9112 £ 0.14
Uniform random sampling 80.40 £ 0.70 87.33 +0.88 88.95 +0.70
W /0o MS mining 76.87 + 0.46 83.92 + 0.60 86.05 + 0.76
Naive GSV-Cities + MSLS 79.96 + 0.46 89.71 + 0.32 91.80 + 0.30
Recompute Cliques 81.96 + 0.59 89.64 + 0.54 91.28 + 0.39
Nordland

Re@1 R@5 R@10
DINOv2 SALAD [16] 76.0 89.2 92.0
Weighted random sampling  88.22 + 0.99 95.22 + 0.45 96.52 +0.38
Naive GSV-Cities + MSLS 68.27 + 5.47 82.92 +£4.99 86.81 + 4.36

We conduct evaluations with different configurations of CliqueMining to assess
the importance of its different components. We base all our ablation studies on
the DINOv2 SALAD baseline.

CliqueMining or training on more data. One of the key contributions of this
work is to train state-of-the-art models on a combination of GSV-Cities and
MSLS. This raises the question of whether the observed improvements result
from training with more data or from CliqueMining. To evaluate this, we
re-train DINOv2 SALAD on a combination of GSV-Cities + MSLS without
CliqueMining. Thus, batches from MSLS are organized in triplets as usually
done in the literature. Table 5.2 shows how, although training on MSLS slightly
increases performance, using CliqueMining produces the best results, specially
for R@1. We also report, for this ablation, results on Nordland which show
more pronounced differences with CliqueMining. This suggest that naively
training on more data brings limited improvements. CliqueMining creates
challenging batches that improve the sensitivity of the model and its recall.
Besides, CliqueMining organizes the images in places, so every image can
simultaneously act as an anchor, positive or negative, increasing the number of
pairwise relations on a batch.

Geographic distance threshold 7. We tested the effect of the T values in the
range 10-30. As shown in Figure 5.6, using the typical decision threshold value
T = 25 achieves the best performance.

MS mining. We built our CliqueMining on top of [33], keeping its online mining
(Equations 5.3 and 5.4). Deactivating it, keeping only our CliqueMining, has a
detrimental effect (see Table 5.2), which indicates that both mining strategies
are compatible.

Sequence sampling. We evaluate the effect of different sampling strategies to
obtain {s1,...,ss} during the graph creation. We specifically try a weighted

Table 5.2: Ablations. First row
shows the recall for the base
DINOv2-SALAD model. Note in
the next three rows that random
sampling based on sequence simi-
larity outperforms slightly a deter-
mininistic sampling of the most
similar ones and some more a uni-
form random sampling. The MS
mining also plays a role in the per-
formance. Note how training on
GSV-Cities + MSLS w/ o CliqueM-
ining, which accounts for the do-
main change effect, still underper-
forms at R@1. Finally, note that
recomputing cliques every epoch
gives metrics that are similar to
computing them only once.
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sampling according to similarity, selecting the top S most similar sequences, or
randomly. Table 5.2 shows that all three sampling strategies obtain very similar
results, but using the most similar sequences produces the best. We argue that
the online mining from Equations 5.3 and 5.4 reduces the actual differences
between the used selection criteria, as it will further select the hardest pairs.
Besides, given the length of some of the sequences, more than one clique might
be sampled from the same sequence, reducing the need to find other similar
ones.

Updating the mining every epoch. Commonly done in literature, updating the
mining after every epoch using the recently updated weights can provide some
benefits to performance. As shown in Table 5.2, obtained recalls are comparable,
and computing the mining after every epoch is computationally expensive.

5.4 Limitations

The main limitation of CliqueMining is that it is specifically tailored for VPR, and
hence it will not be of use for general image retrieval. In addition, CliqueMining
addresses GDS issues, that are mostly relevant for places that are densely
sampled with images. We already reported in Table 5.1 the diminishing returns
as the sampling density decreases in the benchmarks we used. However, this
limitation is softened by the wide range of potential use cases falling into this
condition, and also by the remarkable boost in recall@l in the most dense
sampling cases (+14.7% for Nordland).

Additionally to the above, our CliqueMining is strongly dependent on the
existence of GDS issues. Even if the dataset is densely sampled, there could be

10° 10! 10? 10° 10° 10* 10? 10°
Threshold (meters) Threshold (meters)

(a) SF-XL test v1 (b) SE-XL test v2

Figure 5.6: Recall@l on MSLS
Train (val) for different values of
7. Note how, reasonably, = 25
meters, which is equal to the deci-
sion threshold, is the best value.

Figure 5.7: Recall@K vs. decision
threshold on SF-XL for DINOv2-
SALAD [16] without CliqueM-
ining. Observe how the recall
curves are almost flat beyond the
decision threshold (green dashed
line), indicating a low false nega-
tive rate due to limited GDS. Com-
pare it against the recall curves in
MSLS and Nordland in Figure 5.3.
In this case, enhancing the GDS
will not result in better metrics.
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a lack of GDS issues, as when viewpoint changes account for the majority of
variations. In this cases, the model fails to retrieve close samples, and therefore
CliqueMining would not positively impact its recall. We observed this in the
recent SF-XL [6], a massive dataset of images from San Francisco, often used to
test VPR at scale. Figure 5.7 characterizes the recall in this dataset against the
decision threshold. Observe how, in contrast to Figure 5.3, the recall is almost
flat in the region immediately after the decision threshold. Enhancing the GDS
is not expected to have any effect in this dataset, as the rate of false negatives
due to this reason is very small. Even if this is a limitation, we would argue in
our favour that every mining strategy is strongly dependent on the data, but in
the case of our CliqueMining we have characterized the conditions in which it
should or should not offer an improvement.

5.5 Conclusions

In this chapter we have identified, formulated and analyzed deficiencies in
the GDS of current VPR models. Specifically, we found that they struggle to
correlate descriptors and geographic distances for close range views. Based
on that, we propose CliqueMining, a tailored batch sampling that selects
challenging visually similar places at close ranges, and in particular around
the decision threshold. CliqueMining forces the model to incorporate a finer
grading of the geographic distances in the embedding. Mining such hard
batches is equivalent to finding cliques in a graph of similar image sequences
where connectivity represents spatial proximity. Our evaluation of two recent
models with and without CliqueMining confirms a boost in the GDS which
in turn also boosts the recall. The boost is substantial on densely sampled and
unsaturated benchmarks like MSLS Challenge or Nordland, where training
with CliqueMining brings unprecedented results.
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Motivation and Contributions

Mas ven cuatro ojos que dos.
Four eyes see more than two.

-Spanish proverb

In our daily lives, 3D perception and reasoning occur continuously, allowing us
to interact seamlessly with our environment every time we navigate complex
spaces, avoid obstacles, or manipulate objects. Humans instinctively enhance
this spatial awareness by leveraging multiple perspectives—adjusting our
viewpoints, moving around, and leveraging our stereo vision to gather depth
information at close ranges.

These innate human abilities have long been sought after in the fields of robotics
and computer vision. The capacity to perceive and reason in 3D is crucial
for machines to perform tasks analogous to those humans do effortlessly, like
obstacle avoidance in autonomous driving [119, 120], dexterous manipulation in
robotics [121], or 3D layout recovery in augmented reality [122]. It is of special
interest to perform such tasks with just visual data, as such can be obtained
using cheap, readily available cameras, eliminating the need for more expensive
Sensors.

One of the fundamental tasks in 3D perception is depth estimation. Depth esti-
mation involves determining the distance of objects from a particular viewpoint,
effectively creating a depth map of the scene. An appealing and widespread
approach is to rely solely on single images [10-12], training deep learning models
on vast datasets to infer dense depth maps based on visual clues. This method
benefits from the versatility and simplicity of requiring just one single image,
without more expensive setups, which is advantageous for both training and
inference. However, it faces the challenge of being an ill-posed configuration,
where multiple depth hypotheses may correspond to the same 2D image, leading
to potential inaccuracies and ambiguities.

For this reason, just as humans seek multiple points of view to enhance their
perception, multi-view depth estimation techniques utilize several images to
improve accuracy. In multi-view stereo, features across images are matched
to triangulate depth, providing accurate, consistent, and scaled 3D informa-
tion [123-125]. While these approaches benefit from geometric constraints and
can offer higher accuracy, they require precise knowledge of camera poses,
are more difficult to train, and can struggle with non-Lambertian surfaces or
changes in illumination, which affect feature matching.

This part of the thesis focuses on leveraging multi-view cues in dense depth
estimation. In Chapter 8, we enhance single-view models on sequences of images
by doing a TTR. By using a SfM reconstruction as pseudo ground truth, the
models are able to predict more accurate guesses, especially at large distances.
In Chapter 9, we propose a general-purpose large model for multi-view depth
estimation. Drawing inspiration from recent advancements in single-view depth
prediction, we train a ViT on a varied array of datasets. Aiming to overcome
some of the limitations of previous multi-view systems, our proposed model
can work with any range of depths without an initial guess, can handle dynamic
objects, and has strong generalization performance.



Related Work

In this chapter we discuss related literature about single-view depth (Section7.1),
multi-view depth (Section 7.2) and test-time-refinement (Section 7.3).

7.1 Single-View Depth Learning

Although there exists a large corpus of work on single-view depth under certain
assumptions on the scene geometry, e.g. [126-131], we focus here on approaches
that are mainly based on machine learning and target general scenes.

7.1.1 Supervised Methods

Several early works addressed single-view depth learning either directly from the
image [132] or via semantic labels [133] before the deep learning era. The seminal
works by Eigen et al. [10, 134] significantly improved the prediction accuracy by
training deep networks supervised with ground-truth depth from range sensors.
Since then, single-view depth networks have received significant attention from
the research community, focusing on improving the performance by using
more sophisticated architectures and losses, e.g., [135-141]. A re-formulation of
the problem as an ordinal regression has led to further improvement [11, 142,
143]. Recently, Bae et al.[144] fuse the single-view depths from multiple images,
but differently from our method described in Chapter 8 without a TTR of the
network.

Building on highly advanced and effective image backbones [54], more recent
monocular methods have focused on making general-purpose depth estimation
models, which aim to work on arbitrary scenes [145, 146]. Further works have
scaled up the size of models and datasets, training on combinations of real
and/or synthetic data [147, 148], and have used stronger image-level priors [149,
150]. One of the limitations of models trained from stereo-image-derived
supervision without known baselines [146] or human annotations [145] is that
these only enable a relative, and not metric (e.g. in meters), depth prediction.

Other monocular models predict metric depth [12, 151-154]. Not only does this
rely on appropriate training data, but also requires an understanding of camera
intrinsics, which are often a required additional input to the network.

Conventional monocular methods are inherently limited by only incorporating
information from single views at inference time, even when multi-view infor-
mation is available [155]. On the other hand, with recent advances, they can still
provide a very valuable signal when only one image is available. As in [156-158],
in Chapter 9, we combine features extracted from a monocular depth model
with a multi-view cost volume to better leverage monocular and multi-view
cues.



7.1.2 Self-supervised Methods

As ground truth depth annotations are uncommon, self-supervised approaches
emerged as an alternative, exploiting multi-view photometric consistency [159,
160]. Attracted by the convenience of training without depth labels, many works
have further focused on addressing this paradigm, e.g., [161-167]. Close to
our work from Chapter 8, SfM has been used as a supervisory signal during
training, but limited to probabilistic networks [168], or using disparities [169]
that require stereo images. Among self-supervised works, Monodepth2 [170],
which proposed a robust loss to handle occlusions and discard invalid pixels,
is of particular relevance. Monodepth?2 is the base of most state-of-the-art ap-
proaches, and specifically of the baselines we chose to validate our refinement on:
CADepth [171], that uses self-attention to capture more context, DIFFNet [172],
that applies feature fusion to incorporate semantic information, and Many-
Depth [155], that leverages more than one frame at inference to improve the
predictions.

7.2 Multi-View Depth Learning

Multi-View Stereo (MVS) algorithms estimate depth from posed multi-view
images using epipolar geometry [173]. Given calibrated cameras, early meth-
ods estimated depth by matching image patches [174, 175]. Subsequently, deep
learning approaches were introduced, first for stereo matching [176] and later im-
proved via end-to-end learning, typically using plane-sweep cost volumes [123,
124, 177-183]. Subsequent methods introduced advances in architectures [125,
184, 185], increased robustness to occlusion and moving objects [186-188], inte-
grated temporal information [189], improved model efficiency [190, 191], jointly
estimated camera pose [192, 193] and ingested prior geometry estimates to
improve depths [194].

7.2.1 Generalization to Unseen Domains

With some exceptions [195], earlier stereo and MVS methods were traditionally
both trained and tested on the same dataset/domain, and were limited in their
ability to generalize to out-of-distribution data. This domain generalization
issue is a consequence of most performant learning-based MVS methods being
data-hungry. Approaches such as training on synthetic [196, 197] or pseudo-
labeled depth [198] can be effective, but so far, struggle to span a diverse range
of scene types and scales. Self-supervised approaches can be trained without
depth supervision, but current methods produce inferior depths compared to
fully supervised approaches [199-201]. Concurrent with our work, [202, 203]
trained large binocular stereo models on large synthetic datasets.

7.2.2 Adaptive Cost Volumes.

One of the challenges in developing a general-purpose domain-agnostic MVS
method is that different scenes can contain wildly different depth ranges, e.g.
indoor scenes are limited to a few meters, while outdoor ones can span much
larger distances. This is a problem as conventional cost volumes require a
known depth range, which is typically just estimated based on the minimum
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and maximum depth values in the training set. As a result, there is a need for
cost volumes that are not restricted to a pre-defined range or bins, and instead
are adaptive. In the context of self-supervised learning with unscaled poses,
[155] estimated bin ranges at training time via an exponential moving average of
the depth predictions. Another approach is to predict bin centers iteratively in a
coarse-to-fine manner, where the outputs from the previous iteration are used
to seed the range in the next [181, 204, 205]. Alternatively, the bin offsets can be
predicted by a learned network [206] or from estimated depth uncertainty [207,
208]. In Chapter 9, we estimate cost volume depth ranges to enable us to adapt
to any range of depths, while prior work has done this when the test time range
is known, but they wish to reduce computation or enhance detail.

7.3 Test-Time Refinement

In Chapter 8, we employ a TTR of the networks. Here we describe previous
attempts and literature on the field.

Multi-view consistency is the basis for both self-supervised depth learning
and bundle adjustment [209], this last one naturally occurring at test time.
Inspired by that, TTR was proposed [210, 211], updating the network with
the same self-supervised losses from training. Similarly, McCraith et al. [212]
showed the benefits of encoder-only fine-tuning and proposed two TTR modes:
sequence- and instance-wise. Similar approaches were presented by Watson
et al. [155], with multiple input images for the network, Shu et al. [166], with a
feature-metric loss, and Kuznietsov et al. [213], using a replay buffer. All these
TTR methods inherit the small baseline limitations from photometric losses,
showing small improvements for medium and large depths for which close
views produce small parallax. At these depths, our method from Chapter 8
introduces wide baseline cues, due to the higher invariance of features matching
at wide baselines. This leads to significant improvements over the state of the
art.

Tiwari et al. [214] iterates over optimizing the parameters of a single-view depth
network and running pseudo-RGBD SLAM for pose estimation, but their align-
ment ignores the depth distributions, which results in smaller improvements
compared to ours. Luo et al. work [215] is more related to ours, using SfM
and optical flow as geometric constraints. However, despite heavy optimization
(taking up to 40 minutes for a sequence of less than 250 frames), their TTR
cannot improve over baseline networks on KITTI. Instead of defining derived
constraints, we directly optimize the encoder using the sparse reconstruction as
pseudo ground truth, resulting in a lighter and more effective pipeline.
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Structure from Motion
and Depth Networks

Estimating a dense depth map from a single view is geometrically ill-
posed, and state-of-the-art methods rely on learning depth’s relation with
visual appearance using deep neural networks. On the other hand, SfM
leverages multi-view constraints to produce very accurate but sparse maps,
as matching across images is typically limited by locally discriminative
texture. In this work, we combine the strengths of both approaches by
proposing a novel test-time refinement method, denoted as SfM-TTR, that
boosts the performance of single-view depth networks at test time using
SfM multi-view cues. Specifically, and differently from the state of the
art, we use sparse SfM point clouds as test-time self-supervisory signal,
fine-tuning the network encoder to learn a better representation of the test
scene. Our results show how the addition of SM-TTR to several state-
of-the-art self-supervised and supervised networks improves significantly
their performance, outperforming previous TTR baselines mainly based on
photometric multi-view consistency.

Obtaining accurate and dense depth maps from images is a challenging research
problem and an essential input in a wide array of fields, like robotics [216],
AR [215], endoscopy [217], or autonomous driving [120]. Single-view per-pixel
depth estimation is even more challenging, as it is geometrically ill-posed in
the general case. However, in the last decade, intense research on deep models
applied to this task has produced impressive results, showing high promise for
real-world applications.

Single-view depth learning was initially addressed as a supervised learning
problem, in which deep networks were trained using large image collections
annotated with ground truth depth from range (e.g., LIDAR) sensors [134, 135].
At present, this line of research keeps improving the accuracy of single-view
depth estimates by better learning models and training methods, as illustrated
for example by [11, 218].

In parallel to improving the learning side of the problem, several works are
incorporating single- and multi-view geometric concepts to depth learning,
extending its reach to more general setups. For example, [219, 220] propose
camera intrinsics-aware models, enabling learning and predicting depths for
very different cameras. More importantly, many other works (e.g. [170]) use
losses based on multi-view photometric consistency, enabling self-supervised
learning of depth and even camera intrinsics [221].

Incorporating single- and multi-view geometry into depth learning naturally
links the field to classic research on SfM [175, 222], visual odometry [223, 224]
and visual SLAM [13, 95]. These methods typically produce very accurate
but sparse or semi-dense reconstructions of high-gradient points using only
multi-view geometry at test time. Among the many opportunities for cross-
fertilization of both fields (e.g., using depth networks in visual SLAM [225] or
SfM for training depth networks [168, 169, 226]), our work focuses on using SfM
for refining single-view depth networks at test time.

8.1 Method ........ 36
8.2 Experiments . . ... 39
8.3 Limitations . . . . .. 44
8.4 Conclusion . .. ... 44
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As single-view depth applications typically include a moving camera, several
recent works incorporate multiple views at inference or refine single-view depth
networks with multi-view consistency cues [144, 155, 166, 210, 212, 214, 215].
Most approaches, however, rely mainly on photometric losses, similar to the
ones used for self-supervised training. These losses are limited to be computed
between close views, creating weak geometric constraints. Our contribution in
this chapter is a novel method that, differently from the others in the literature,
uses exclusively a SfM reconstruction for TTR. Although SfM supervision is
sparser than typical photometric losses, it is also significantly less noisy as it has
been estimated from wider baselines. Our results show that our approach, which
we denote as SEIM-TTR, provides state-of-the-art results for TTR, outperforming
photometric test-time refinement (Ph-TTR) for several state-of the-art supervised
and self-supervised baselines.

8.1 Method: SfM-TTR

Our SIM-TTR takes any single-view depth network, trained either supervised
or self-supervisedly, and fine-tunes it for the test data by a three-stage process.
As a brief summary, we first estimate a sparse feature-based reconstruction
of the scene from multiple views (Subsection 8.1.1) and predict depth outputs
with the network (Subsection 8.1.2). Then, we align the scale of the sparse
point cloud and the network’s depth (Subsection 8.1.3). Finally, we fine-tune
the network using the depths of the aligned sparse point cloud as supervisory
signal (Subsection 8.1.4).

8.1.1 Multi-View Depth from SfM

We perform a 3D reconstruction of the target scene using an off-the-shelf SfM
algorithm. In our current implementation we use COLMAP [175], as it shows a
high degree of accuracy and robustness in a wide variety of scenarios, although
alternative SfM or visual SLAM implementations could also have been used [95,
227,228].

From a set of images . = {Iy, ..., Ix}, Iz € R@*3 vk e {1,...,K} of a scene,
COLMAP returns a set of | 6-degrees-of-freedom poses & = {Py, ..., Pj}, P; =

(I;f tlf) € SE(3)Vj € {1,...,]}, ] < K, corresponding to the cameras that the

Figure 8.1: SEM-TTR overview.
Our approach assumes an exist-
ing pre-trained depth network
and an input sequence at test
time. We estimate a SfM 3D re-
construction using the input se-
quence, and depth maps using a
single-view depth network. We
align the SfM point cloud with
the network’s depth to obtain a
pseudo-ground truth to refine the
network encoder, improving its
representation of the test scene
and producing significantly more
accurate depth estimates.
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method was able to register, and the set of 3D keypoints X = {X1,...,Xj}, X; €
R3 Vi € {1,...,I} that were reconstructed, all of them in a common reference
frame. The camera with pose P; observes a subset of L; points from the total set
of 3D points X; = {X1,..., Xt ].} C X. COLMAP final estimates are obtained by

minimizing the sum of the squared reprojection errors Z;:l DI rlzj.

The depth of each of the I point in the j camera frame is computed as
SIM _
D =e5 (R]T (X - t]»)) (8.1)

where e3 = (0 0 1)—r is the unit vector in the optical axis direction. We

will group the depths for the sparse set of points X; in the set EJZ].SfM =
{Dy, ... IDE?,\]/-I}/ DlsiM € Ry VI € {1,...,L;}, and the depths for all im-
ages in 5™ = {lesfM,. . .,Qb]SfM} Vied{l,..., ]}

8.1.2 Single-View Depth from Neural Networks

Our SfM-TTR method can be applied to any architecture, and hence its predicted
depth D?N € R“*" for an image I; can be generally formulated as

DN =1 (g (1, 05) , 04) (8.2)

where h(-) and g(-) stand respectively for the decoder and encoder parts of the
deep networks, and 0, and 6, their respective weights, that have been trained
either supervised or self-supervisedly.

Note that the depths E%]S’fM and D}\IN correspond to the same image I; but are
respectively sparse and dense, having hence a different number of elements,
and they may have different scales. The scale is unobservable by COLMAP
and self-supervised networks, while it is learned from the training data by
supervised networks.

In order to estimate the relative scale between C:b].SfM and D;\IN and refine at
inference time the deep network, we have to select from D}\IN those elements
corresponding to the sparse depth of QZBJ,SM. For a general element /, we use the

sampling operator [-] to access the depth corresponding to the pixel coordinates
P

DN =D [py,/] (8.3)

where p; ; is obtained from the coordinates of the 3D points X; € X; and the
camera pose P; and applying the pinhole projection function, that we will
denote as 7t(-)

iy = (u 0, =7 (RT (xi =) ®

We finally group the depths predicted by the deep network for the sparse set of

points &; in a joint set B~ = {D1'Y, ..., DI}, D}\]]-N € R>o, and the depths
’ 17, 7.

for all images in NN = {QZBFNS, cee, 92)}\“5} Vie{l,...,]}.
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8.1.3 Scale Alignment

o) StM %NNS

Scale alignment is not trivial in our setup, as both and are affected
by heteroscedastic (depth-dependent) inlier noise and contain a non-negligible
rate of outliers. In addition, we are interested in removing outliers from gstM
but we do want to keep them in @NN, as then our SfM-TTR can reduce their
errors. We developed a novel scale alignment method with two stages: we make
a first fit with a strict inlier model to obtain an accurate relative scale, and then

relax it in the second stage to select the points used for self-supervision from
DM,

In the first stage we use RANSAC [229], computing 1D model instantiations,
51,7 = D}}'/Di™ and consider in the inlier set 2NN/ ¢ @NNs and 95M/ ¢ 5™

all depths pairs {D}}II]\I , Dls;ﬂj\fl} for which the following holds

2
.. DSIM _ NN
(Sl,] Dl',j’ Dl’,j’)

.. DSM
Sl,] Dl/’]'/

<7 (8.5)

where 7 is the inlier threshold.

In most occasions, the distribution of depths in the image is highly unbalanced,
with higher frequencies for closer depths. This, together with the heteroscedas-
ticity of the depth errors (errors are smaller for closer depths), causes that
the frequently used median scale [215] corresponds to close points, biasing
the estimation. Using least squares with all the inlier set {2\, 35M} jg
not a good alternative either, the fit will be biased in this case towards large
depths as they have larger errors. For these reasons, we use weighted least
squares to obtain a refined estimate of s with the depths D}\]’],N/ e NN/ and
D?,?vl/ € gSMY

2
§= argminz Z wls]. (s . DZS?\N - D}\T].N/) (8.6)
s T

where w; . is a per-pixel weight, that should be proportional to the inverse of
/]

the expected depth variance 012, .. Under the reasonable assumption of similar
baselines and matching noises for all reconstructed points, it is well known
that the variance grows with the depth squared [222] and hence we can use as
weights

w; = 1et, ~ (oY (8.7)
Finally, we use s; from the optimization in Equation 8.6 to obtain the final set
of inliers {BNNsY, 3SMY V) that we will use for our SIM-TTR. We proceed
similarly to Equation 8.5, but this time using the absolute value in the numerator,
relaxing in this manner the model and favoring the inclusion of noisy depth
predictions from the network depth set @NNs in order to have the chance to
improve them at test time.
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8.1.4 Test-Time Refinement

We refine the target network for the selected scene by updating its parameters
using the depths in the final inlier set PSIMYY 59 supervision. As in [215], we
optimize over the complete scene, thus obtaining a refined network with more
consistent predictions across all views. This is different from other TTR works,
such as [212], in which they refine a different network for each frame of the
sequence.

Each batch update works as follows. We sample an image I; from the sequence
and do a feed-forward pass through the network to obtain the depth prediction
D?IN . Then we supervise the prediction with the sparse pseudo ground truth

%]SfM//. This supervision is weighted according to the reliability of the recon-

structed 3D points, that we approximate based on their reprojection errors as
0 _ 2

wl’]‘ = eXP(—||1’l,j||2)~

1 02 StMv' vV NNV'V
& = 7] Zz:wl'j“s DM = DN (8.8)
i

As state-of-the-art depth networks already produce sharp predictions with
well-defined object contours, we argue that our refinement should only optimize
the internal understanding of the scene. Hence, we follow a similar approach
as [212] and only update the encoder parameters during the TTR, keeping the
rest of the network fixed. Our TTR optimization can be hence formulated as
0 g = argming . In this manner, the frozen decoder h(:) keeps producing
sharp predictions, but now they stem from a more informed representation of
the underlying scene.

8.2 Experiments

8.2.1 Implementation Details and Baselines

We validate our proposed SfM-TTR by applying it to different state-of-the-art
baselines. Specifically, we provide evaluations with the baselines CADepth [171],
DIFFNet [172], and ManyDepth [155] as representative of self-supervised ap-
proaches. We also implemented it on AdaBins [11] to benchmark SfM-TTR’s
performance also with a representative supervised model. The same set of hy-
perparameters was used for SEM-TTR with all baselines, achieving a substantial
improvement in all of them without requiring individual tuning.

For the sparse reconstruction, we run COLMAP [175] with its default parameters,
using a single pinhole camera model per sequence and sequential matching.
Although we use all available images from a sequence to create the sparse
reconstruction, the network is only optimized with the target frames of the
evaluation. Regarding our scale alignment, we detect outliers running RANSAC
for 20 iterations with inlier threshold 7 = 0.5. For the TTR optimization, we use
Adam [230] applied to the encoder parameters, 0 gs with a learning rate of 1074
for 200 steps.

For comparison, we also implemented the instance-wise photometric refinement
(Ph-TTR) from ManyDepth [155]!, based on the work of McCraith et al. [212],
which updates the weights of the network encoder during inference using the

1: The TTR code was not available
in the authors’ repository at the
time of writing this document.
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photometric loss from the training. Table 8.1 validates our implementation,
showing similar performance as the one reported by the authors in [155].

| Method | AbsRel| | SqRel| | RMSE| | RMSElog | |
ManyDepth [155] Ph-TTR ¢ 0.087 0.696 4183 0.167
ManyDepth [155] Ph-TTR * 0.088 0.681 4122 0.168

8.2.2 Dataset

We run all evaluations on the KITTI dataset [119], the common benchmark
for single- and multi-view depth learning. Regarding the KITTI ground truth
for depth learning evaluations, the literature is split among those following
Eigen et al. [10], with reprojected LiDAR point clouds, and those using the
newer and improved ground truth [231], which aggregates 5 consecutive frames
and handles dynamic objects. Given the higher reliability of the new ground
truth, we used it to evaluate all the baselines on the Eigen test split with all the
images that contain ground truth, a total of 652. We provide evaluation without
and with the Eigen cropping, see Table 8.4 and Table 8.5. For fairness and
completeness, as some methods present results with the old ground truth, we
also include an evaluation with the LiDAR reprojected depths, on the complete
Eigen split with 697 images. We report additional results directly taken from
the corresponding papers, see Table 8.6.

In a few of the KITTI test scenes the camera motion is insufficient for proper
SfM convergence. Our SEM-TTR cannot refine the depth in those cases, but for a
fair comparison, we included these sequences in the global metrics using the
results of the network without SIM-TTR.

Note that although we have presented a novel scale alignment, for the sake of
fairness we align the self-supervised predictions and the ground truth with the
per-image median, as commonly done [155, 170]. Also following the common
evaluation practices, we set a maximum depth of 80 meters.

8.2.3 Comparisons against Baselines

We demonstrate the benefits of our method by comparing the results of applying
a photometric refinement (Ph-TTR) and ours (SfM-TTR) on the baseline networks.
Table 8.4 shows how our SfM-TTR consistently and significantly improves
the predictions of all networks, obtaining superior performance than the
photometric refinement. Besides, Ph-TTR fails to improve over CADepth without
TTR. The most likely reason is that it requires individual hyperparameter tuning,
which was not required for our SfM-TTR.

The advantages of our proposed method are especially noticeable for large
depths, where Ph-TTR cannot provide a good supervision signal due to the
limited parallax between close frames. Our refinement, instead, leverages
SfM, which triangulates points from the complete sequence. This produces
better estimates for distant points and better supervision, resulting in a drastic
reduction of the RMSE by up to 30%. This effect is clearly visible in Figure 8.2.
Although smaller depths show comparable performance for Ph-TTR and SfM-
TTR, the photometric loss does not help in areas with large depths. SEM-TTR,
instead, provides a significant gain in performance in those areas.

Table 8.1: ManyDepth Ph-
TTR [155] (¢) and our own
implementation (*) obtain similar
metrics.
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The best results are obtained when applying our SIM-TTR to DIFFNet, even
though the original DIFFNet without TTR performs slightly worse than Many-
Depth. We believe that our TTR has a smaller effect on ManyDepth because
it already leverages scene information by using multiple frames at inference
time. SIM-TTR can also improve results on AdaBins, for which Ph-TTR cannot
be implemented, as AdaBins does not provide a pose estimation module. This
further demonstrates the effectiveness of directly optimizing for the 3D points
from COLMAP.

Qualitatively, Figure 8.5 shows how predictions after SIM-TTR keep looking
sharp with well-defined boundaries despite the sparsity of the pseudo-ground
truth. We argue that optimizing the encoder enables a better understanding of
the scene while freezing the decoder maintains the previously learned sharpness
of the predictions. The error maps from Figure 8.4 reveal the differences between
refinements, showing how our method can effectively reduce errors in regions
where Ph-TTR cannot. The positive effect of SSM-TTR in distant points is visible
in Figure 8.3, where large depths move closer to the ground truth after our
refinement.

Regarding runtime efficiency, our method requires roughly 2 seconds per frame
during the optimization, similar to Ph-TTR, and faster than other multi-view
TTR that also use large baselines [214, 215].

Figure 8.2: Error metrics for dif-
ferent depths with DIFFNet. Our
SfM-TTR (thick blue) gives a sub-
stantial improvement over No-
TTR (dashed black) and Ph-TTR
(thin red) at medium and large
depths. Ph-TTR offers some im-
provement over No-TTR at close
depths, where the small baselines
of photometric losses are infor-
mative, but it does not improve
or it is slightly worse at medium
and large depths. The metrics
6 < 1.252 and 6 < 1.25% are not
plotted, as differences are small
(see for example Table 8.4).
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[ Method | AbsRel] [ SqRel] [ RMSE| | RMSElog] |
AdaBins [11] 0.072 0.325 3.134 0.112
AdaBins [11] + SIM-TTR (full model) 0.062 0.204 2.297 0.092
AdaBins [11] + SfM-TTR (encoder) 0.060 0.204 2.260 0.091
ManyDepth [155] 0.064 0.345 3.116 0.103
ManyDepth [155] + SEIM-TTR (full model) 0.059 0.293 2.655 0.096
ManyDepth [155] + SEM-TTR (encoder) 0.057 0.294 2.648 0.094
CADepth [171] 0.078 0.403 3.432 0.119
CADepth [171] + SEM-TTR (full model) 0.069 0.321 2.824 0.104
CADepth [171] + SEIM-TTR (encoder) 0.068 0.328 2.821 0.106
DIFFNet [172] 0.071 0.361 3.230 0.110
DIFFNet [172] + SEM-TTR (full model) 0.057 0.273 2.621 0.092
DIFFNet [172] + SEM-TTR (encoder) 0.056 0.273 2.600 0.093

8.2.4 Ablation Studies

To validate the relative importance of the individual components of our SEIM-TTR,
we perform ablation studies where we dispose some of our key components.

Table 8.2 shows a comparison between refining the complete network and
only updating the encoder. Similar to [212], we obtain better results when only
updating the encoder, further showing how light refinement schemes should
only focus on improving the underlying representation of the network.

As shown in Table 8.3, using the mean of per-image medians [168, 215] alignment
in our SIM-TTR, as well as other ablated versions of our method, worsens
significantly the performance on AdaBins. The alignment is specially important
for supervised models, as their scale is not corrected during the evaluation.
With our alignment, we are accounting for outliers with RANSAC and for the
heteroscedastic nature of the depth noise with weighted least squares, resulting
in substantially more robust and accurate results.

Figure 8.3: Depth predictions
and ground truth before and
after SfTM-TTR with DIFFNet.
The red dots stand for predicted
pixel depths on a KITTI sequence
with DIFFNet, the black dashed
line stands for zero error. Note
how after SfIM-TTR the red dots
gather closer to the dashed black
line, illustrating that the predicted
depths are closer to the ground
truth ones.

Table 8.2: Encoder vs. full net-
work TTR. Note how the best re-
sults are achieved with encoder-
only TTR.
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Method

[ AbsRel] [ SqRel] [ RMSE] [ RMSElog] |

AdaBins [11]

AdaBins [11] + SIM-TTR (median)

AdaBins [11] + SIM-TTR
[
[

AdaBins [11] + SfIM-TTR w,"j =1)
AdaBins [11] + SEIM-TTR

(

(@NNS\/ %SH\/I\/ )
AdaBins [11] + SfM-TTR (Least Squares)

(

0.072
0.074
0.065
0.064
0.062

0.060

0.325
0.263
0.278
0.222
0.206

0.204

3.134
2.509
2.787
2.346
2.310

2.260

0.112
0.103
0.103
0.097
0.091

0.091

Table 8.3: Alignment abla-
tion study. Note the substan-
tial improvement of our scal-
ing approach (detailed in Subsec-
tion 8.1.3) over other alignments.

Table 8.4: Quantitative results with new KITTI ground truth, Eigen split and no cropping. Best results per model in bold, best results
across all self-supervised models underlined. Experimental results are marked with #, results from original papers with o. We compare
different architectures without TTR, with Ph-TTR and with our SfM-TTR. t Results from AdaBins differ from [11], as in this table we do not
crop during evaluation. For results using cropping, see Table 8.5.

[ TTR | Method [ AbsRel| [ SqRel| [ RMSE] | RMSElog] | 6<125 T [ 6 <125 1 [ 6 <125 1 |
X | AdaBins [11] +f 0.072 0.325 3134 0.112 0.941 0.990 0.998
4 AdaBins [11] + SEM-TTR 0.060 0.204 2.260 0.091 0.970 0.993 0.998
X | ManyDepth [155] ¢ 0.064 0.345 3116 0.103 0.949 0.989 0.997
v | ManyDepth [155] + Ph-TTR o 0.056 0.322 3.034 0.096 0.961 0.992 0.997
v | ManyDepth [155] + SEM-TTR |  0.057 0.294 2.648 0.094 0.963 0.990 0.997
X | CADepth [1I71] + 0.078 0.403 3432 0.119 0.933 0.988 0.997
v | CADepth [171] + Ph-TTR * 0.088 0.475 3723 0132 0.914 0.984 0.996
4 CADepth [171] + SfM-TTR 0.068 0.328 2.821 0.106 0.955 0.990 0.996
X | DIFFNet [172] » 0.071 0.361 3230 0.110 0.946 0.990 0.997
v | DIFFNet [172] + Ph-TTR * 0.057 0.285 2.900 0.095 0.961 0.992 0.998
v | DIFENet [172] + SEM-TTR 0.056 0.273 2.600 0.093 0.969 0.992 0.997

Table 8.5: Quantitative results with new KITTI ground truth, Eigen split and Eigen cropping. Best results per model in bold, best results
across all self-supervised models underlined. Experimental results are marked with #, results from papers with ¢. t Results from AdaBins
+ SfM-TTR follow the common KITTI Benchmark cropping from the supervised depth learning literature [11], and the AdaBins results
without TTR are taken from the original paper.

[ TTR | Method [ AbsRel| [ SqRel| [ RMSE] | RMSElog] [ 6 <125 T [ 6 <1252 1 [ 6 <1.25° 1 |
X | AdaBins[1] ot 0.058 0.190 2.360 0.088 0.964 0.995 0.999
v AdaBins [11] + SEIM-TTR t 0.054 0.138 1.885 0.078 0.978 0.996 0.999
X | ManyDepth [155] * 0.059 0.297 2.960 0.097 0.954 0.991 0.998
v | ManyDepth [155] + Ph-TTR * 0.053 0.252 2.774 0.089 0.962 0.993 0.998
v | ManyDepth [155] + SEM-TTR 0.054 0.252 2.510 0.089 0.966 0.992 0.998
X | CADepth [171] * 0.073 0.359 3.287 0112 0.941 0.990 0.997
v | CADepth [171] + Ph-TTR * 0.082 0.426 3.565 0.124 0.923 0.986 0.997
v CADepth [171] + SEM-TTR 0.060 0.263 2.620 0.096 0.962 0.992 0.997
X | DIFFNet [172] * 0.066 0.318 3.078 0.103 0.953 0.992 0.998
v/ | DIFFNet [172] + Ph-TTR * 0.053 0.252 2778 0.090 0.965 0.993 0.998
v/ | DIFFNet [172] + SEM-TTR 0.052 0.229 2.444 0.085 0.973 0.994 0.998

Table 8.6: Quantitative results with Eigen (old) KITTI ground truth, Eigen split and Eigen cropping. Best results per model in bold, best
results across all self-supervised models underlined. Experimental results are marked with #, results from original papers with <. Note
how, with this different ground truth, we again outperform the results of the baselines in Tables 8.4 and 8.5 and we further demonstrate
improvement over Monodepth2 [170] and the TTR approaches [214, 215] that were evaluated after such architecture in the original papers.

[ TTR | Method | AbsRel | [ SqRel | [ RMSE| [ RMSElog| [ 6 <125 T [ 6<1.25%2 1 [ 6<1.25° T |
X | AdaBins [11] * 0.087 0.480 3.637 0.168 0.917 0.970 0.985
v/ | AdaBins [11] + SEM-TTR 0.088 0.454 3.355 0.164 0.927 0.971 0.985
X | Monodepth2 (384x112) [170] o 0.128 1.040 5.216 0.207 0.849 0.951 0.978
v | Monodepth2 + TTR (from [215]) ¢ 0.130 2.086 4.876 0.205 0.878 0.946 0.970
X | Monodepth2 [170] ¢ 0.115 0.903 4.863 0.193 0.877 0.9590 0.981
v | Monodepth2 + TTR (from [214]) o 0.113 0.793 4.655 0.188 0.874 0.960 0.983
v/ | Monodepth2 + SfM TTR 0.098 0.858 4.418 0.177 0.908 0.964 0.981
X | ManyDepth [155] o 0.093 0.715 4.245 0172 0.909 0.966 0.983
v | ManyDepth [155] + Ph-TTR © 0.087 0.696 4183 0.167 0.918 0.968 0.983
v/ | ManyDepth [155] + SfM-TTR 0.090 0.718 4.040 0.168 0.917 0.967 0.983
X | CADepth [171] o 0.102 0.734 4.407 0178 0.898 0.966 0.984
v | CADepth [171] + Ph-TTR * 0.110 0.802 4.648 0.187 0.878 0.962 0.983
v/ | CADepth [171] + SEM-TTR 0.095 0.703 4.073 0.173 0.912 0.966 0.982
X | DIFENet [172] o 0.097 0.722 4.345 0.174 0.907 0.967 0.984
v/ | DIFFNet [172] + Ph-TTR * 0.087 0.667 4138 0.167 0.920 0.968 0.984
v/ | DIFFNet[172] + SfM-TTR 0.087 0.660 3.948 0.165 0.925 0.969 0.984
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8.3 Limitations

As our current implementation of SfM-TTR depends on COLMAP’s output, it
is inherently offline and its performance is bounded to the quality of the StM
results. Although we achieve good results in KITTI, a natural scenario and
standard benchmark, more challenging setups for SfM (for example, dynamic
objects, drastic appearance changes or low-parallax motion) are also problematic
for SEM-TTR. Works addressing such SfM challenges [232] will also be beneficial
for our method. Although we could easily replace COLMAP’s reconstruction by
that of an online real-time visual SLAM pipeline, e.g. [95], online and real-time
refinement of deep models is not straightforward. We find these aspects relevant
for our future work.

Although SfM-TTR excels at medium and large depths, we have noticed a
comparable or slightly worse performance than Ph-TTR at very close depths, for
which even the adjacent views used in Ph-TTR have sufficient parallax. Observe
the metrics in Figure 8.2 for depths under 10 meters. This observation suggests
a future line of research to combine the best from both Ph-TTR and SfM-TTR.

8.4 Conclusion

In this chapter we have presented SEIM-TTR, an effective test-time refinement
for single-view depth networks that preserves the learned priors of supervised
and self-supervised models while also leveraging wide-baseline multi-view
constraints at inference. The key ingredient is formulating a TTR loss based
on sparse SfM depths, which have been estimated from wider baselines than
traditional photometric losses, that only consider adjacent frames. We propose
a novel RANSAC-based method for scale alignment between SfM and the depth
network that accounts for the depth outliers and its heteroscedastic noise. Very
importantly, we use a fixed set of hyperparameters for our SIM-TTR for all
experiments, without requiring per-architecture or per-sequence tuning.

Our experiments show that our SfM-TTR improves significantly the depth
predictions of different state-of-the-art networks, supervised and self-supervised.
We also outperform by a wide margin, in particular at medium and large depths,
the common TTR approach that we denote as Ph-TTR, based on the use of
photometric losses. These results validate our method as a general TTR approach
easy to implement and use after all kinds of networks, current and future ones.
Besides, as a more general comment, we believe that the presented contributions
provide insights towards a further leverage of SfM in self-supervised depth
learning, arising as a promising extension to the widely used photometry-based
losses.

44
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No TTR Ph-TTR SftM-TTR

CADepth  ManyDepth AdaBins

DIFFNet

CADepth  ManyDepth AdaBins

DIFFNet

Figure 8.4: RMSE maps for different baselines architectures (rows) and TTR (columns). The input image is the center top image, as
AdaBins cannot be refined with photometric loss. The benefit of our SfM-TTR is particularly noticeable for large depths (framed by red
rectangles). Ph-TTR methods struggle in these areas as they use weak low-parallax constraints, while SfM leverages wider baselines and
produces more accurate depth supervision. Figure best viewed in color.

Input AdaBins + SfM TTR ManyDepth + SIM-TTR CADepth + SfM-TTR DIFFNet + SIM-TTR

Figure 8.5: Qualitative depth maps for different architectures after SSM-TTR on KITTI.



Zero-Shot Multi-View Stereo

Computing accurate depth from multiple views is a fundamental and
longstanding challenge in computer vision. However, most existing ap-
proaches do not generalize well across different domains and scene types
(e.g. indoor vs outdoor). Training a general-purpose multi-view stereo
model is challenging and raises several questions, e.g. how to best make use
of transformer-based architectures, how to incorporate additional metadata
when there is a variable number of input views, and how to estimate the
range of valid depths which can vary considerably across different scenes
and is typically not known a priori? To address these issues, we introduce
MVSA, a novel and versatile Multi-View Stereo architecture that aims to
work Anywhere by generalizing across diverse domains and depth ranges.
MVSA combines monocular and multi-view cues with an adaptive cost
volume to deal with scale-related issues. We demonstrate state-of-the-art
zero-shot depth estimation on the Robust Multi-View Depth Benchmark,
surpassing existing multi-view stereo and monocular baselines.

Estimating accurate depth from multiple RGB images is a core challenge in
3D vision, and a building block for downstream applications like 3D recon-
struction and autonomous driving. Recent approaches in learning-based MVS
are capable of generating accurate depths [123, 125, 233]. However, existing
methods typically struggle to generalize to scene and camera setups that differ
significantly from those in their training data. As a result, there is a pressing
need for general-purpose MVS methods that are more robust to differences
between the training and test distributions.

We take inspiration from the recent explosion in scene-agnostic single-view
depth models, which predict plausible metric [12, 151, 152, 154, 234, 235] or
up-to-scale [146-149] depth using only a single image as input. These models
are typically trained on large curated sets of synthetic and/or real RGB-D data,
endowing them with impressive generalization performance on previously
unseen data. Single-view models are, however, inherently limited by their input.
For our specific depth prediction target, constraining the model’s input to just
one image forces it to use single-view geometry cues (e. g. vanishing points) and
learned patterns [236], while losing the stronger multi-view signal. While there
are temporal extensions of these single view models [155, 237-240], their focus is
on temporal perceptual consistency, and not necessarily multi-view consistency.
In application contexts where multiple views are available at inference time, it
stands to reason that these lead to significantly more accurate depth estimates [15,
215, 241].

Developing a general-purpose MVS method, however, raises two significant
challenges. Firstly, it should be able to deal with arbitrary depth ranges. Existing
MVS methods typically require a known range of depths to ‘search’ over along
epipolar lines, corresponding to a discrete set of depth bins used to build a cost
volume. These depths are typically either fixed (and chosen from the range of
depths in the training data) [190] or are provided at test time for each image [123,

9.1 Method ........ 47
9.2 Experiments . .. .. 52
9.3 Conclusions . . ... 58
Chapter based on [18].

Sergio Izquierdo et al.
‘MVSAnywhere: Zero Shot Multi-
View Stereo’
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Recognition (CVPR), 2025

Code and models are avail-
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233, 242]. Secondly, the many emerging benefits of ViTs [98] motivate us to find
a way to ‘upgrade’ parts of standard MVS architectures that are still CNNs.

To address these challenges, we introduce a new general-purpose MVS method
named Multi-View Stereo Anywhere (MVSA). Similarly to recent performant
monocular methods, it is trained on a large and diverse set of data, spanning
diverse depth ranges. Along with harmonizing these training signals, our main
technical contributions are:

» A novel transformer-based architecture that processes the multi-view
cost volume, while also incorporating monocular features. We propose a
Cost Volume Patchifier that tokenizes the cost volume without loosing its
details, while also incorporating features from a monocular ViT.

» We propose a view-count-agnostic and scale-agnostic mechanism to
construct the cost volume using geometric metadata given any number of
input source frames. This is in contrast to the established practice [190]
of concatenating geometric metadata from a fixed number of frames to
build the cost volume.

MVSA predicts highly accurate and 3D-consistent depths, obtaining state-of-the-
art results on the Robust Multi-View Depth Benchmark [243], which contains
a variety of challenging held-out datasets. We also report scores for some
new single- and multi-view methods for comparison. Our better depths result
in improved 3D mesh reconstruction compared to alternative depth-based
reconstruction methods (Figure 9.1).

9.1 Method: General-purpose Multi-View Stereo

Our model takes as input a H X W reference image I, together with neighboring
source frames {Iy, ..., In}, each with their relative poses and intrinsics. At
test time we aim to predict a dense depth map D, for I,. For ours to be a
general-purpose MVS method, we seek to:

1. Generalize to any domain. Most current MVS methods are typically
trained on and tested on data from similar domains, e. g. indoor only or
driving only.

2. Generalize to any range of depths. Predicted depth maps need to be
accurate for nearby surfaces (e.g. for robotics) or for more distant ones
(e.g. for drones and autonomous driving). In some scenarios like SfM,
the depths and camera poses are in a non-metric up-to-scale coordinate
system. Hence, general-purpose MVS should be robust to the scale of the
coordinate system.

3. Be robust to the number and selection of source frames. Traditional
MVS systems can struggle when there is little overlap between source
and reference frames. We also want MVS methods to be agnostic to the
number of source frames available at test time.

4. Predict 3D-consistent depths. Depths from one viewpoint should be
consistent with those predicted from different viewpoints. Fusion of
consistent depth maps will produce a mesh with accurate estimates of 3D
surfaces.

While prior works have tackled these problems in turn, we are the first model,
to the best of our knowledge, to tackle all four problems in a single system.

MVSA (Ours)

MAST3R + triangulation

Depth Pro (mono)

2 S Vpkr;;, N =
Figure 9.1: Our MVSA model re-
sults in high-quality reconstruc-
tions from posed images, and is
superior to existing monocular
and MVS methods. Here we com-
pare with Depth Pro [153], a re-
cent monocular method which
produces sharp and good looking
depth maps, but can have incon-
sistent scaling of depths, which
are required for good meshes.
We also include a variant of
MAST3R [193] that we have aug-
mented with ground truth cam-
era poses. Our model gives sharp
depth maps which are also accu-
rate and 3D consistent, producing
high-quality meshes in zero-shot
environments.
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9.1.1 MVSAnywhere

We introduce MVSAnywhere (MVSA), a novel general-purpose MVS system
which is designed to embody each of the previous properties. To help us learn
from diverse datasets and hence generalize to any domain, we use a large
transformer-based architecture, which takes as input: (1) multi-view information
from the reference and source images, and (2) single-view information, which
is extracted directly from the reference image via a monocular reference image
encoder. The overall architecture (Figure 9.2) is broadly inspired by recent MVS
approaches, e.g. [190]. It comprises five key components:

Feature extractor. This encodes the source and reference images into deep
feature maps %, and Fic(1...N}, that will be processed via a cost volume. We
use the first two blocks of a ResNet18 [244] for this encoder, producing feature
maps at resolution H/4 X W /4.

Cost volume. Following e.g. [124, 178, 180, 185], we warp feature maps %; from
each source view to the reference one using a set of hypothesized depth
values (i.e. bins) 8. We then concatenate these warped features and %, with
appropriate metadata, following [190]. See Subsection 9.1.2 for our specific
novel contributions in this matter.

Reference image encoder. This extracts powerful deep monocular features for
I,. We use the ViT Base [98] encoder from Depth Anything V2 [148], with their
pretrained weights for relative monocular depth estimation, which help us to
be robust to limited overlaps between source and reference frames. As ViT
Base operates on 14 X 14 patches, the reference image is resized to % X %
resolution before feeding to ViT Base, such that the extracted features are size
Hx X

Mono/Multi Cue Combiner. This converts the “patchified” features of the cost
volume and reference image into a sequence of features which go to our depth
decoder. Monocular and multi-view cues are combined by a novel component
described in Subsection 9.1.3.

Depth Decoder. Based on the decoder from [245], MVSA progressively up-
samples and processes features from the Mono/Multi Cue Combiner module
to produce the final depth map at the reference image resolution.

9.1.2 Metadata Agnostic to View Count and Scale

SimpleRecon [190] demonstrated that readily available metadata, e.g. geometric
and camera pose information, can be incorporated into the cost volume to
improve depths. For each pixel location (1, v,) in I, and depth bin k in %, we
backproject the pixel to a 3D point P and then reproject it into every source
view I;.

Figure 9.2: Our general-purpose
multi-view depth estimation
model. We start with a cost-
volume based architecture, which
matches deep features between
views at different hypothesized
depths. Key for performance
are our Cost Volume Patchifier
and Mono/Multi Cue Combiner.
These also fuse single-view infor-
mation coming from the Refer-
ence Image Encoder and source
views.
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Figure 9.3: Our metadata cost volume is agnostic to view count and scale. To be agnostic to view count our MLP produces a weight (w;)
and a score (s;) per position that are aggregated into a single value. To be scale agnostic we normalize the metadata that is unit dependent,
i.e. the depths and the pose distances.

We enable this formulation to work with arbitrary scales by normalizing the
metadata that depends on the scale. The specific metadata for the bin with
coordinates (i, v;, k) in the cost volume includes:

Feature dot product: The dot product of the reference image features and each
warped source image features, expressed for each source image i as
Fy - (F)i, where () is the warping operation which warps features from
the source image to the reference viewpoint at the depth corresponding
to bin k. This value is often used as the sole matching affinity in cost
volumes.

Visual features: We also include the features from reference %, and for each
warped source image i, (F);. This supplements the dot product by also
incorporating the visual features that might help to discern the reliability
of the matching at that point.

Ray directions rf’”"’v’ and rf’"”v’ € R3: Thisis the normalized directions point-
ing from the camera origins to the 3D location of a point (k, u,,v,) in
the plane sweep cost volume. We create rays for the reference and all the
source images.

k,uy oy .

Reference plane depth z, : Thisis the depth of the pointat position (k, u,, v,)
in the cost volume, measured perpendicularly from the reference camera.
We normalize these values with the minimum and maximum depth of
the scene ((zr — dmin)/Amax)-

Reprojected depths zf’u”v’: This is the perpendicular depth of the 3D point
at position (k, u,, v,) in the cost volume, relative to the source camera .
As with z,, we normalize these values with the minimum and maximum
depth of the scene ((z; — din)/dmax)-

kuy,0p

Relative ray angles O, ;: This is the angle between the ray directions r,

k,ui, v
and r

Relative pose distance p; ;: This is the relative pose distance between the ref-
erence camera and a source frame, as defined in [189]:

2
pri= \/”tr,i” + g’fr(” -R,), 9.1

where t, ; and R, ; are the relative translation and rotation between views
i and r. The translation, t; ;, is normalized by the source frame with the
biggest pose distance.

Depth validity masks ml]."”””’: This is a binary mask indicating whether the

point (k, u,, v,) in the cost volume projects in front of the source camera i
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or not.

SimpleRecon [190]’s cost volume concatenates metadata from all eight source
frames and runs an MLP to produce one single cost (matching score) per spatial
location and depth hypothesis. While this gives good scores, its limitation is that
it requires exactly eight source frames for every training and test reference image,
limiting the model’s flexibility (note though that traditional MVS methods are
typically already view-count agnostic). To address this limitation, we introduce
a view-count-agnostic metadata component which enables a single model to
generalize to any number of source views. For each source frame, we run an
MLP that ingests the metadata from the reference frame and the source frame
and predicts two values: a score and a weight. This results in N scores and N
weights. A weighted sum of the N scores is computed after the N weights go
through softmax. This weighted sum is used as the value in the cost volume at
every pixel location (¢, v) and depth hypothesis k. Our novel module enables
aggregation of the matching score and confidence for each source frame, while
allowing for a variable number of source frames for each I,.

The source camera poses may be close to the reference, or far from it. To be
more invariant to this possible range of scales, we also make the metadata scene
scale-agnostic. To this end, we normalize the relative pose measures of the
metadata using a maximum across all the source frames for a given reference
frame. We also normalize the depth hypothesis metadata using the maximum
and minimum of 2.

As the scene scale information is not provided to the rest of our network, we
rescale the depth predictions to match the scale of the input poses. Our depths
are predicted with a sigmoid function o over the logit x. To align the prediction
of the network with the cost volume, the sigmoid output is scaled by the depth
range of the cost volume, so

D, =exp (log(dmin) + 1og(dmax/Amin) * o(x)) . (9.2)

9.1.3 Mono/Multi Cue Combiner

Given the cost volume of shape || X % X %, and the reference image encoder

features of shape C x % X % (outputs of different blocks of the reference image

Figure 9.4: Our cost volume
patchifier enables high-quality in-
formation to be extracted from a
|| x % X % cost volume, ready
for input to the Mono/Multi Cue
Combiner ViT. (a) Shows the
naive approach to patchification.
(b) Our approach makes better
use of the reference image fea-
tures.
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encoder), we pose the question: how can we best combine these features to
provide the strongest signal for the decoder? Motivated by the recent success of
transformer architectures in single-view depth prediction [148, 153, 245], we
use a ViT-Base network to process these features in a Mono/Multi Cue Combiner
network, which produces a sequence of tokens for the decoder to transform into
a depth prediction.

To effectively achieve this we need to i) convert the cost volume into a token
sequence without sacrificing information and ii) incorporate the monocular
cues to help in decoding sharp depth. For i), a naive approach would be to apply
a strided convolution projecting to the ViT token dimensions, resembling how
RGB images are patchified. However this is suboptimal, for it lacks contextual
information on how to achieve this downsampling. Instead, we propose a
cost volume patchifier module. This guides the downsampling process with
information from the first two blocks of the reference image encoder. We convert
the cost volume into tokens using two strided convolutions, but first, concatenate
each of them with the monocular features of the first two blocks, transposed
and projected at 1/4 and 1/8 of the input resolution, respectively. The output of
this module is a sequence of % X % tokens, matching the sequence length of
the monocular features. These tokens are then fed into a ViT-B initialized with
DINOv2 weights (see Fig. 9.4).

For ii) we add the tokens from the cost volume with the ones from the reference
image encoder after projecting the latter with a linear layer. We repeat this
process at blocks 2, 5, 9, and 11 of the ViT to incorporate multiple levels of
monocular cues. This simple mechanism allows the network to refine and
regularize the cost volume with the help of the reference image structure.

9.1.4 Generalizing to Any Range of Depths

When building a cost volume, a set of depth hypotheses (i.e. bins) % are used to
warp feature maps %; to I,. This raises the question: How do we choose % to
generalize to any range of depths? Depth ranges vary hugely across datasets
(see Figure 9.5), so using the same fixed range is suboptimal.

We address this with a cascaded cost volume approach, first introduced in 3D
stereo matching [181, 204, 205]. While these works start from a known ‘ground
truth” depth range, we use the known intrinsics and extrinsics to infer the

minimum and maximum depths that could be matched between I, and each I;.

We space our initial depth bins logarithmically within this range, then make
an initial depth prediction. The min and max values of this initial estimate are
then used to rebuild the cost volume for a final depth prediction. This iterative

process occurs only at test time; during training, we use the known depth range.

Figure 9.5: MVS datasets cover
a wide range of depth values.
Here we show the distribution
of % depths in the DTU [246],
ScanNet [247], ETH3D [248],
Tanks and Temples [249], and
KITTI [119] datasets, as a stacked
bar chart. Note the log x-axis.
This wide range of depth values
can be challenging when it comes
to constructing meaningful cost
volumes and predicting the final
depths.
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Name Scenes #total  #total #training Metric Moving
scenes images tuples poses?  objects?
Hypersim [250] Indoor 461 77K 45K Yes No
TartanAlIR [251] Indoor, Outdoor 30 ™M 92K Yes Yes
BlendedMVG [252] Indoor, Outdoor, Aerial 389 110K 97K No No
MatrixCity [253] Outdoor, Aerial 1 519K 40K Yes No
VKITTI2 [254, 255] Outdoor 5 21K 40K Yes Yes
Dynamic Replica [256]  Indoor 484 145K 70K Yes Yes
MVSSynth [124] Outdoor 117 12K 3K No Yes
SAIL-VOS 3D [257,258]  Indoor, Outdoor 6807 237K 21K Yes Yes

Importantly, previous methods that are provided with an exact depth range
learn to predict depths that cover all the depth hypotheses. Thus, when using a
rough estimate of the range, these methods fail to align the prediction to the
actual valid depths. To further mitigate this issue, we augment the ground truth
ranges via a random perturbation during training.

9.1.5 Implementation Details

Losses. We use the supervised losses from [190]. These comprise an L1 loss
between the log of the ground truth and the log of the predicted depth values,
and a gradient and normals loss. Training losses are applied to four output
scales of the decoder. At inference, only the final largest-scale prediction is
used. We take as input 640 X 480 images, and output depth maps at the same
resolution. We use 64 depth bins in 9% sampled in log space.

Keyframes. For datasets with dense sequences, we choose reference and source
frames with the strategy of [189, 190]. To be robust to sparser sets of frames, we
also select tuples based on geometry overlap, obtaining tuples of not necessarily
consecutive frames.

Training data. For MVSA to generalize across domains, we train on a large and
diverse set of synthetic datasets, as listed in Table 9.1. A subset of these training
datasets contain moving objects. Our reference image encoder is initialized
from Depth Anything V2 (DAV2) [148], which uses a teacher network trained on
synthetic datasets similar to ours, and a student network distilled using various
real images that do not overlap with our evaluation benchmarks. DAV2 was
initialized from a pretrained DINOvV2 [54] network, in turn trained on internet
images.

9.2 Experiments

We evaluate MVSA on both depth estimation and 3D reconstruction tasks. We
also implement and report scores for a set of new baselines, which have never
before been evaluated on the benchmarks we use.

9.2.1 Baselines

Where possible, we obtain results directly from prior works [192, 243]. We
also evaluate and implement other strong baselines that did not previously
report performance on diverse MVS benchmarks. These include: (i) A strong
monocular baseline in the form of DAV?2 [148]. To account for the unknown
affine transform, we align its predictions to the ground truth using least squares.

Table 9.1: We train on eight
MVS datasets from a variety
of domains. All these datasets
are synthetically rendered, giving
them perfect ground truth depths
and camera calibration. However,
BlendedMVG uses real textures
on their assets.
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(ii) MAST3R [193] (raw depth estimate) which involves passing the reference and
one other source image as input and taking the z component of the point cloud
as the depth prediction. (iii) MAST3R (plus our triangulation) which is a novel
extension of MAST3R so that it can use provided extrinsics and intrinsics, when
available. For each of the available source images, we use MAST3R descriptors
to match points with the reference image. We then triangulate points from such
matches, rescale the raw depth predictions, and aggregate the point clouds from
the different views using a sum weighted by the predicted confidences. Note,
this method requires one forward pass and thousands of triangulations per
source view, significantly reducing its speed. MAST3R trains on ScanNet [247]
and MegaDepth [226] (which contains a subset of the Tanks and Temples
dataset [249]).

Benchmark. We evaluate ‘zero-shot’ depth estimation performance on the five

multi-view datasets from the Robust Multi-View Depth Benchmark (RMVDB) [243],

which are not included in our training data. It contains the KITTI [119] Scan-
Net [247], ETH3D [248], DTU [246], and Tanks and Temples [249] datasets and
represents a diverse set of evaluation scenarios, e. g. driving sequences, room
scans, building scans, and tabletop objects, among others. We use the evaluation
procedure and source view selection procedure from [243], allowing direct
comparison to previous approaches.

Methods are grouped into four different types (a-d) depending on the infor-
mation they are provided, e.g. if they are given GT cameras, GT depth ranges,
etc.. MVSA naturally fits into type (d), where all methods are given GT poses,
so need to predict depth directly in metric scale and hence do not need any
alignment or knowledge of the GT depth range. Note, some methods train on
the training splits of one, or more, of the benchmark datasets, thus achieving
very high scores in those cases. We denote these in Table 9.2 with a parenthesis
around them.

Metrics. We report two commonly used metrics to compare the predicted D
and GT depth DCT. The absolute relative depth (rel) is computed per-pixel as
|D — DCT|/DCT, while the inlier percentage 7, with threshold 1.03, is computed
per-pixel as [max(D/D¢?, DT/D) < 1.03], where [] is the Iverson bracket. Both
metrics are averaged over all valid GT pixels in each test image, before averaging
over all images.

Results. Table 9.2 depicts the quantitative results, where we outputperform all
baselines across most metrics. Qualitative results in Figure 9.8 demonstrate that
our MVSA model produces depth maps with superior edge detail and consistent
scaling across a variety of scenes, visually outperforming prior methods. MVSA
also performs well on moving objects, e.g. as found in KITTI; see also Fig. 9.7.
Both MAST3R triangulated and the Robust MVD Baseline exhibit poor edge
quality, limiting their suitability for applications such as single-image novel
view synthesis [259], which requires sharp depth boundaries. While Depth Pro
produces sharp edges, it frequently displays incorrect depth scaling. In contrast,
our MVSA model combines competitive quantitative performance with sharper
edges, making it ideal for tasks that demand both visual and depth accuracy.
Finally, GT depth-based median and least squares scaling of monocular methods
and depth from frames methods (w/o poses) is crucial for good scores, while
MVSA consistently predicts high-quality and metric depths.

Alternative Variant of RMVDB. We further evaluate some of the leading
models on a RMVDB variant, in which we change some conditions to better
reflect real-world scenarios. In this variant, for ScanNet we use keyframes using

53
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MVSA (Ours)

MVSFormer++

the strategy of [189], rather than the temporally sequential keyframes provided
by the benchmark. For ETH3D we undistort both the images and the ground
truth using their provided Thin-Prism [260] camera parameters. Results are
shown in Table 9.3. On this revised benchmark, we more comprehensively
outperform the baselines.

9.2.2 Ablations Study

In Table 9.5 we validate our design decisions by turning on and off sections
of our system. We train all ablations at a smaller resolution (512 x 384 input),
and without using metadata, for efficiency. At this resolution, Row A is ‘ours’
and all other rows are ablations relative to this. Row B replaces our standard
ViT-B with the smaller ViT Small, both for the cost volume ViT and the reference
image encoder. The reference image encoder is initialized from Depth Anything
v2 (small). Row C uses our training data and pipeline, but with the fully-
convolutional architecture from SimpleRecon [190] (without metadata). Row D
is our system but without adding noise to the ground truth range at training
time (Section 9.1.4). Although this method can excel when the initial range is
accurate, it can fail to generalize (see DTU). Row E is our full architecture but
without the pretrained encoder weights from [148]. Instead we initialize with
DINOv2 weights. Row F is our system without a cascaded cost volume, and
instead uses a fixed set of depth bins, losing the ability to refine depth bins and
work with arbitrary scales or scene sizes. Row H is our full model, but where
we take the first depth prediction from the model as our final output, without
re-building the cost volume. Even though these bins capture the full range of
depths in the test datasets (Figure 9.5), we see that performance degrades. Row
G uses CNN layers instead of ViT to combine mono/multi features. Row I uses
naive patchification to preprocess the cost volume for input to the mono/multi
cue combiner ViT, as outlined in Figure 9.4.

Robustness to pose rescaling.

In Table 9.4 we evaluate the robustness to pose scale in ScanNet by rescaling
poses and depths (which are in metric scale) by a factor of 100. This simulates the
type of ‘non-metric scene scale” we might see if, for example, we reconstructed
a scene using SfM package such as COLMAP which does not provide metric
scaled reconstructions. Our depths are robust to this scaling (vs ours w/o
normalization of the metadata, which performs badly.

9.2.3 Meshing and 3D Reconstruction

To judge the 3D-consistency of our predictions we evaluate our model on
ScanNet Mesh Evaluation benchmark using the protocol defined in [265] which
also uses source frame selection from [189]. The benchmark uses a GT mesh

Figure 9.6: Many MVS models
fail in areas of poor frame over-
lap. Here we show how MVS-
Former++ (right) fails to recover
geometry in areas of the image
where there are no matching pix-
els between source and target
views (see the top left corner). Our
model (middle) handles this situ-
ation gracefully.
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Table 9.2: We set a new SOTA in depth estimation on the RMVDB. See Section 9.2 for details of the metrics, baselines and groupings.
Monocular methods with 1 are given ground truth intrinsics. The best result for each section appears in bold, and (parentheses) indicate
results where the evaluation dataset is in the training set.

Approach Gr | ot |Align| KITTI ScanNet ETH3D DTU T&T Average
Poses | Range rel] 7 |rel] 7T |rel] 7| rel| T |rel] 7T |rel] 77T timel[s]]

Classical SfM approaches

Cormar [175, 261] v X X 12.0 58.2 | 146 34.2 | 164 551| 0.7 96.5 | 2.7 95.0 | 93 678 ~180
CoLMAP Dense [175, 261] | X X 269 527 | 380 225 | 89.8 232| 208 693|257 764 | 402 488 =180
a) Depth from frames (w/o poses)

DeMoN [262] X | X [t | 155 15.2 | 12.0 21.0 | 174 154| 218 16.6 | 13.0 23.2 | 16.0 183  0.08

DeepV2D ki1 [177] X | X | med | (31 (749)| 237 111 | 271 10.1| 24.8 81 | 341 91 | 226 227 207

DeepV2D scannet [177] X | x | med | 100 362| (44) (548)| 118 293| 77 330| 89 464 | 86 399 3.57

MASTS3R [193] (raw output) X | X |med| 33 677| 43) (64.0) 27 79.0| 3.5 667 |(2.4) (81.6)| 3.3 718 0.07

MAST3R [193] (raw output) X | x| x |614 04|28 (194) 438 31| 1458 05 |(66.9) (0.0)| 661 47 007

b) Depth from frames and poses (with per-image range provided)

MVSNet [123] I/ X 227 361 | 246 204 | 354 314| (1.8) (86.0)| 83 73.0 | 186 494 0.07

MVSNet Inv. Depth [123] IV X 186 307 | 227 209 | 216 356| (1.8) (86.7)| 6.5 746 | 142 497 0.32

CVP-MVSNet [263] I/ X |1567 22 | 1371 159 |156.4 13.6| (4.0) (68.4)| 247 529 | 958 30.6 0.49

Vis-MVSNet [186] I/ X 95 554 | 89 335 | 10.8 43.3| (1.8) (87.4)| 41 872 | 70 614 070

PatchmatchNet [242] IV X 108 458 | 85 353 | 191 34.8| (21) (82.8)| 48 829 | 91 563 0.28

Fast-MVSNet [191] I/ X 144 371 | 170 246 | 252 32.0| (2.5 (81.8)| 83 686 | 13.5 488 0.30

MVS2D ScanNet [233] VIiv | x |212 87 |@2 (53)| 274 48| 172 98 | 292 44 | 244 66 0.04

MVS2D pru [233] IV X 2266 07 | 323 111 | 99.0 11.6| (3.6) (642)| 258 28.0 | 775 231 0.05

MVSFormer++ DTU [185] I/ X 26.3 428 | 167 28.0 | 30.3 40.1| (0.8) (95.7)| 72 823 | 163 578 078

MVSFormer++ DTU+BlendedMVG [185] | v/ | ¢/ X 44 657 | 79 394 | 7.8 504| (09 (953)| 3.2 881 | 48 678 0.78

) Single-view depth

Depth Pro [153] +

Depth Pro [153] +

Metric3D [12] +

Metric3D [12] +

UniDepthV?2 [235] +
UniDepthV2 [235]
UniDepthV1[235] +
UniDepthV1 [235] +
DepthAnything V2 (ViT-B) [148]
d) Depth from frames and poses (w/o p

med | 61 39.6 | (43) (584)| 6.1 53.5| 56 496 | 56 575 | 56 517 516
X 136 143 | 92 197 | 285 87| 161.8 3.5 |383 44 | 503 101 516
med | 51 441 | 24 783 | 44 545 101 395 | 62 48.0| 56 529 046
X 87 132 | 62 193 | 127 13.0| 890.5 14 | 167 137 |187.0 121 0.46
med | 40 553 | (21) (82.6)| 3.7 66.2| 3.2 723 | 3.6 684 | 33 689 0.29
X 137 48 | (32) (61.3)| 154 11.9| 9648 13 | 167 127 | 2027 184 0.29
med | 44 516 | (1.9) (84.3)| 54 484| 9.3 318 | 96 387 | 61 510 0.21
X 52 395 | (27) (69.4)| 482 18| 5833 1.0 | 307 4.2 | 1340 232 0.20
Istsqt| 6.6 386 | 40 586 | 47 56.5| 2.6 747 | 45 575 | 48 541 0.05

-image range)

XX X X X X X X X
X X X X X X X X X

[}
i1

DeMoN [262] v X X 167 134 | 750 0.0 | 19.0 16.2| 237 11.5 | 176 183 | 304 119 0.08
DeepTAM [264] | X X | 687 04 | (67) (397)| 204 19.8| 58.0 91 | 400 129 | 388 164 0.85
DeepV2D kit [177] | X X [(204) (16.3)| 258 81 | 301 94| 246 82 |385 96 | 279 103 143
DeepV2D SscanNet [177] v X X 619 52 | (3.8) (60.2)| 187 287| 9.2 274 | 335 38.0 | 254 319 215
MVSNet [123] | X X 14.0 35.8 |1568.0 5.7 |507.7 8.3 |(4429.1) (0.1) |118.2 50.7 |1327.4 201 0.15
MVSNet nv. Depth [123] v X X 296 81 | 652 285 | 603 58| (287) (48.9)| 514 146 | 47.0 212 0.28
CVP-MVSNet [263] | X X |158.2 1.2 |2289.0 0.1 |1735.3 1.2 |(8314.0) (0.0) [4159 9.5 |2582.5 24  0.50
Vis-MVSNet [186] | X X 10.3 544 | 849 156 | 51.5 17.4|(3742) (17) | 211 65.6 | 108.4 31.0 0.82
PatchmatchNet [242] | X X 1290 163 | 701 167 | 994 35| (82.6) (5.6) | 394 193 | 641 123 0.18
Fast-MVSNet [191] | X X 121 3741|2871 94 |131.2 9.6 |(5404) (1.9) | 33.9 47.2 | 2009 211 0.35
MVS2D scanNet [233] | X X | 734 00 | (45 (541)| 30.7 144| 50 579|564 111 | 340 275 0.05
MVS2D pru [233] X X 1933 00 | 515 16 | 780 00| (16) (92.3)| 875 0.0 | 624 188 0.06
Robust MVD Baseline [243] | X X 71 419 | 74 384 | 90 426| 27 80| 50 751 | 63 56.0 0.06
MASTB3R (plus our triangulation)| v | X X 34 666 | (45) (63.00 3.1 729| 34 67.3 | (2.4) (83.3)| 34 701 072
MVSA v X X 32 688 | 37 629 | 32 680 13 95.0 | 21 905 | 27 77.0 0.12
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Approach ScanNet ETH3D Table 9.3: Our variant of
rel] 77 |rel| 77 RMVDB. We use better test-
P 7 time tuples for ScanNet, and for
Robust MV]? Baseline [243]| 6.02 47.83 |5.75 71.64 ETH3D we use the undistorted

MAST3R Triangulated (3.88) (68.68)|2.37 84.90 test images.

MVSA (Ours) 3.22 69.45 | 1.27 93.24

Approach ScanNet |ScanNet X100 Table 9.4: Results on an arbitrary
rel| 1 |rell 117 scale. We scale the ScanNet poses

by a factor of 100 to evaluate ro-

Ours (low res) 4.22 61.8014.22 6183 bustness to arbitrary scales.

Ours w/o norm. metadata w/o view count agnostic | 3.97 61.23|4.34  57.59

Figure 9.7: We handle dy-

o namic objects significantly better
Input MVSFormert+ MVSFormert+ than traditional MVS e.g. MVS-

(Anonymized) (As published)  (Trained on our data) Formert+.

Depth Pro [153]  RGB (I;)

MVD [243]

MVSA (Ours) MAST3R [193]

GT

Figure 9.8: Qualitative comparison of depth prediction results across multiple datasets (KITTL ScanNet, ETH3D, DTU, and Tanks &
Temples). Rows show different methods: Depth Pro [243], rMVD baseline [243], MAST3R (Triangulated) [193], and our MVSA model, along
with RGB inputs (I;) and ground-truth depths (GT). Depth Pro provides sharp edges but often misestimates depth scale, while our MVSA
model captures finer details than MAST3R and rMVD. Depth maps are normalized to ground truth depth range for consistent visualization.
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KITTI ScanNet | ETH3D DTU T&T Average

rel] 77 |rel] 77 |rel] 77 [rel| 77 |rel]l 77 |rel| 77T

A Ours (no metadata, low res.)| 3.39 66.88|3.86 60.82|3.11 70.17 | 2.43 92.05|2.23 88.38|3.00 75.66
B w/ ViT Small 3.57 64.34|4.40 56.57|3.63 64.61|2.69 91.52|2.71 84.51|3.40 72.31
C w/ [190]’s architecture 3.63 65.94|5.03 51.76 | 3.74 63.09| 1.77 90.97|2.78 87.90|3.39 71.93
D w/o noise on GT range 3.33 66.83|5.14 52.77|3.53 66.32|13.45 89.21|2.34 87.64|5.32 74.89
E w/o0 DAV2 weights 3.45 65.42|4.58 57.14|3.48 65.59| 2.14 92.48|2.56 86.01|3.24 73.33
F w/ fixed bins [0-100m] 3.41 64.33|3.80 61.62|3.15 67.20| 411 65.64|2.36 85.72|3.37 68.90
G no MMCC ViT 3.54 65.32|4.39 56.94|3.56 65.27|3.07 90.49|2.46 87.54|3.41 73.11
H w/o bin refinement 3.57 63.39|5.18 51.05|3.50 67.93| 6.80 82.12|2.27 87.04|4.26 70.31
I Naive patchify 3.66 62.61|4.27 58.86|3.18 67.27| 1.95 91.69|2.46 86.52| 3.11 73.39

Comp| Acc| Chamfer| PrecT Recall T F-Score T

DeepVideoMVS [189] S 10.68 6.90 8.79 0.541 0.592 0.563
ATLAS [266] S 716 7.61 7.38 0.675 0.605 0.636
NeuralRecon [267] S 5.09 913 711 0.630 0.612 0.619
3DVNet [268] S 772 673 7.22 0.655 0.596 0.621
TransformerFusion [265] S 552 827 6.89 0.728 0.600 0.655
VoRTX [269] S 431 723 5.77 0.767 0.651 0.703
SimpleRecon [190] S 553 6.09 5.81 0.686 0.658 0.671
COLMAP [175] 10.22 11.88 11.05 0.509 0.474 0.489
MAST3R [193] (raw depth) S+ 12.35 1269 1252 0.265 0.283 0.272
MAST3R [193] (+ triangulation) S+ 5.38 678 6.08 0.572  0.655 0.608
SimpleRecon [190] (trained on our data) 8.07 6.67 7.37 0.501 0.597 0.544
MVSA (Ours) 493 6.39 5.66 0.616 0.696 0.652

collected with an active RGBD sensor captured in a video. The evaluation
computes point-to-point vertex error from GT to predicted (as accuracy), from
predicted to GT (as completion), and the average of the two (as chamfer).
Additionally, 200k points are sampled uniformly over each mesh and point-to-
point errors thresholded at 5cm distance are used to compute precision, recall
and F-score. Almost all competing methods are trained on ScanNet, however our
method that was not trained on ScanNet performs comparatively, outperforming
many of the methods in Table 9.6.

9.2.4 Gaussian Splat Regularization using MVSAnywhere

We show a use case of our method as a regularizer for Gaussian Splats. We
follow a similar approach as VCR-GauS [270] and DN-Splatter [271] regularizing
depth and normals during training as additional losses. In Figure 9.9, we show
qualitative results of the meshes obtained after using raw Splatfacto without
regularization, and with normal and depth supervision from Metric3D [12] and
from MVSA. Note that we used an scale-invariant loss for Metric3D given that
the used scenes lay in arbitrary scales. More details on this regularization are
available on the code.

Limitations. While we use multi-view information to generate depths, we do
not enforce or encourage temporal consistency. Techniques for this [198, 215,
240] could work with MVSA. Also, like traditional MVS, our method requires
known camera intrinsics and poses; recent works suggest this requirement
could be relaxed [272, 273].

Table 9.5: Ablation Study. Here
we validate our design decisions
on RMVDB [243] by ablating
various components. See Subsec-
tion 9.2.2 for details. First and
second best scores are indicated.

Table 9.6: ScanNet Mesh Eval-
uation [265]. Scores adapted
from [190, 265]. Rows marked
with S were trained on Scan-
Net only, while those marked
S+ were trained on ScanNet and
other datasets. Our MVSA model,
which was not trained on Scan-
Net, outperforms many models
which were, e. g. [266-268].
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I N larizati Metric3D MVSA (Ours)
mput scene o regularization Depth + Normal Depth + Normal

9.3 Conclusions

We introduced MVSAnywhere, a new general-purpose MVS depth estimation
approach. We addressed challenges associated with training on diverse MVS
datasets, such as how to best leverage ViT-based architectures, how to incorpo-
rate geometric metadata, and how to handle variable depth ranges. Through
extensive experimentation, we compare to numerous existing and new baselines.
Our contributions result in state-of-the-art zero-shot performance on a range of
challenging reconstruction and depth estimation test datasets, in some cases
even outperforming models trained on the test domains.

Figure 9.9: Qualitative compar-
ison of Gaussian Splat meshes
using Metric3D and MVSA as
regularizers.



Conclusion

This thesis has explored two fundamental tasks of spatial perception within
the broader field of Spatial Al: Visual Place Recognition and multi-view depth
estimation.

In the first part of the thesis, we addressed VPR. In Chapter 4 we described
how to leverage a large feature extractor effectively and introduced our novel
module SALAD. Although previous attempts have been made to use large
vision models as backbones in VPR, we demonstrate how fine-tuning DINOv2
improves over the out-of-the-box version and produces state-of-the-art results.
Besides, we presented SALAD, a novel aggregation module that can assign
features to clusters more effectively than NetVLAD, outperforming previous
methods even with smaller descriptors.

In Chapter 5, we analyzed how previous VPR methods, including SALAD,
struggle to correlate descriptor and geographic distance, especially around the
decision threshold. In light of this, we identify and describe the Geographic
Distance Sensitivity of recent models—the ability to assign smaller descriptor
distances to pairs of images that are geographically closer. To overcome this, we
proposed a novel mining strategy, CliqueMining, which samples batches with
challenging hard negative examples. Training with this novel strategy results
in a boost in the GDS and improved metrics in densely sampled and visually
aliased environments like Nordland or MSLS Challenge.

This first part of the thesis has significantly advanced the state of the art in VPR.
With DINOv2 SALAD, deep models are easier and faster to train resulting in
higher recalls and improved robustness. Combining this with CliqueMining
further improves the metrics on dense and unsaturated datasets.

Despite these advancements, we have observed that current models struggle
to correctly rank images just based on descriptor distances. In future work,
we aim to explicitly train to retrieve the correct order of the retrieved images.
Using contrastive losses reduces VPR to a binary problem, where samples are
either positive (same place) or negative (different place). Instead, we suggest
incorporating the geographic distance into the loss, to enforce smaller descriptor
distances to pairs of images that are indeed closer geographically.

The second part of this thesis focused on leveraging multiple views of a scene
for depth estimation. In Chapter 8, we propose an effective approach to enrich
single-view depth methods with image sequence information. We developed a
test-time refinement of the networks supervising them with the sparse signal of
a COLMAP reconstruction. Although this setup poses some challenges, like
outliers in the sparse reconstruction or different scales between the network and
COLMAP, we propose a RANSAC alignment that correctly retrieves the scale
and removes possible outliers. As a result, the refined methods can leverage the
wide baseline information from COLMAP and produce much more accurate
guesses at large depths, clearly outperforming the commonly used photometric
refinement.

Lastly, in Chapter 9, we developed a general-purpose multi-view depth system,
that we named MVSAnywhere. This model takes inspiration from single-view
depth approaches and addresses the challenges that limit the widespread of
multi-view systems. It is trained on multiple synthetic datasets to have strong



generalization, leverages the ViT architecture for single and multi-view, has
strong monocular features to handle dynamic or low overlapping scenes, does
not require depth range as input, and uses cost-volume metadata but works
with different scales. Extensive evaluation shows how MVSAnywhere results
in state-of-the-art zero-shot performance on varied and challenging testing
datasets.

These two works demonstrate how multi-view information can be leveraged
for depth estimation resulting in better accuracies than single-view models.
Although this is unsurprising and multi-view depth has been long studied,
most of the approaches focused on small datasets or the same train and test
distribution, and the community lacked more general systems. In this thesis,
we show both the importance and accuracy of multi-view and take some of the
first steps towards general-purpose multi-view depth models.

The next steps in this line of research may focus on how to aggregate multi-view
information without any knowledge or heuristic about the scene depth range,
thus avoiding the two-step refinement. To achieve this, the cost volume may be
built by sampling along epipolar lines and concatenating these values with the
depth at those points. This will allow for a more effective use of the correlation,
as only valid and feasible pixels will be sampled. Another line of research
could explore how to leverage powerful matching features in the cost volume,
such as those of MAST3R. As these features are trained to be matched, they
could be an excellent candidate to build the cost volume, especially texture-less
areas, aliased patterns, or strong illumination changes, where current feature
extractors tend to fail.
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Conclusion

En esta tesis se han explorado dos tareas fundamentales de la percepcién
espacial dentro del campo mds amplio de la inteligencia artificial espacial:
el Reconocimiento Visual de Lugares o VPR y la estimacién de profundidad
multivista.

En la primera parte de la tesis, abordamos el reconocimiento visual de lugares.
En el Capitulo 4 describimos cémo aprovechar eficazmente un extractor de
caracteristicas de gran capacidad e introdujimos el nuevo médulo SALAD.
Aungque ha habido intentos previos de utilizar modelos visuales grandes como
extractor de caracteristicas en VPR, nosotros hemos demostrado cémo seguir
entrenando DINOv?2 para la tarea de VPR mejora sustancialmente los resultados
respecto a la version original. Ademads, presentamos SALAD, un novedoso
modulo de agregacién capaz de asignar caracteristicas a cltsteres de forma
mas efectiva que NetVLAD, superando a métodos anteriores incluso utilizando
descriptores mas pequefios.

En el Capitulo 5 analizamos cémo los métodos previos de VPR, incluido SALAD,
presentan dificultades para correlar la distancia en el espacio de descriptores con
la distancia geogréfica, especialmente cerca del umbral de decisién. A raiz de
este andlisis, identificamos y describimos la sensibilidad a la distancia geografica
(GDS, por sus siglas en inglés) de los modelos actuales: la capacidad de asignar
distancias menores a los pares de imégenes mds cercanas geograficamente. Para
solventar este problema, propusimos una nueva estrategia de muestreo de datos,
CliqueMining, que selecciona conjuntos de imagenes con ejemplos negativos
dificiles para la red. Entrenar con esta nueva estrategia proporciona una mejora
en la GDS y aumenta las métricas en entornos densos, como Nordland o MSLS
Challenge.

Esta primera parte de la tesis ha traido una mejora significativa del estado
del arte en VPR. Con DINOv2 SALAD, los modelos profundos se entrenan
de manera maés sencilla y rdpida, obteniendo mejores métricas y una mayor
robustez. Combinando esto con CliqueMining se logran atin mejores resultados
en conjuntos de datos densos.

A pesar de estos avances, hemos observado que los modelos actuales todavia
presentan dificultades para ordenar correctamente las imdgenes tinicamente
en base a las distancias de sus descriptores. Para trabajos futuros, proponemos
entrenar explicitamente para recuperar el orden correcto en la lista de imagenes
recuperadas. El uso de funciones de coste basadas en contraste reduce el
problema de VPR a una clasificacién binaria (mismo o distinto lugar), pero
consideramos que incorporar la distancia geografica en la funcién de coste
permitiria forzar distancias menores en el espacio de descriptores a aquellas
imagenes que estén realmente mas proximas geograficamente.

La segunda parte de esta tesis se ha centrado en aprovechar multiples vistas de
una escena para la estimacién de profundidad. En el Capitulo 8, proponemos un
nuevo método para incorporar informacién multivista en sistemas de estimacién
de profundidad monoculares. Desarrollamos un refinamiento en tiempo de
inferencia que utiliza como objetivo la sefial dispersa de una reconstrucciéon
COLMAP. Aunque esta configuracién presenta desafios, como la presencia de
errores en la reconstruccion o las diferencias de escala entre la red y COLMAP,
propusimos una alineacién mediante RANSAC que recupera correctamente



la escala y elimina posibles errores. Como resultado, los métodos, una vez
refinados, pueden aprovechar la informacién multivista proporcionada por
COLMAP y producir predicciones mucho mds precisas a grandes distancias,
superando claramente al refinamiento fotométrico habitual.

Por dltimo, en el Capitulo 9, desarrollamos un sistema de estimacién de pro-
fundidad multivista de propdsito general al que denominamos MVSAnywhere.
Este modelo se inspira en sistemas monoculares y aborda los principales de-
safios que limitaban la popularizacién de los métodos multivista. El sistema
estd entrenado con datos sintéticos variados para lograr generalizar a nuevas
escenas, aprovecha arquitecturas ViT tanto para la informacién monocular
como la multivista, presenta caracteristicas monoculares robustas que permiten
manejar escenas con baja superposicién o elementos dindmicos, no requiere
conocer de antemano el rango de profundidades, e incorpora metadatos en el
volumen de costes manteniendo compatibilidad con distintas escalas. Hemos
evaluado el sistema de forma exhaustiva, demostrando que MVSAnywhere
alcanza los mejores resultados en distintas evaluaciones.

Estos dos trabajos demuestran cémo la informacién multivista puede aprovecharse
para obtener estimaciones de profundidad mds precisas que los modelos monoc-
ulares. Aunque esto no es nada nuevo y la estimacién multivista ha sido
estudiada durante décadas, la mayoria de métodos anteriores se limitaban a
conjuntos de datos pequefios o a distribuciones de entrenamiento y evaluacién
similares. En esta tesis mostramos tanto la importancia como el potencial de
los métodos multivista, dando algunos de los primeros pasos hacia modelos
multivista de propdsito general.

Las siguientes lineas de investigacion pueden centrarse en cémo agregar infor-
macién multivista sin necesidad de conocimiento previo o heuristicas sobre el
rango de profundidad de la escena, evitando asi el proceso de refinamiento en
dos pasos. Para lograrlo, el volumen de costes podria construirse muestreando
directamente a lo largo de las lineas epipolares y concatenando estos valores
con la profundidad en esos puntos. Esto permitiria un uso mds eficiente de la
correlacién, ya que s6lo se muestrearfan pixeles validos. Otra linea futura seria
investigar cémo aprovechar descriptores potentes entrenados especificamente
para tareas de matching, como los de MAST3R. Dado que estas caracteristicas
estdn entrenadas para ser emparejadas, podrian ser una excelente opcién para
construir el volumen de costes, especialmente en regiones con baja textura,
patrones repetidos o cambios de iluminacién, donde los extractores actuales
tienden a fallar.
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